Vehicle Accident Analysis and Reconstruction Methods

Raymond M. Brach and R. Matthew Brach, SAE, 2010, $2^{\text {nd }}$ Edition (R-397)
January 20, 2024

page Eq/Line Correction (should be)

Comment
$7 \quad$ line $22 \quad(33,0.60)$ should be $(32.0,0.60)$
$11 \quad$ line $23 \quad x$ should be \bar{x}
line $25 \quad x$ should be \bar{x}
. . α, when $\alpha=\pi / 2$ for any s.
line $35 \quad \ldots \beta=\alpha, F_{x}=F \cos \alpha, F_{y}=-F \sin \alpha$

Eq 2.20
$F_{x}(\alpha, s)=\frac{F_{x}(s) F_{y}(\alpha) s}{\sqrt{s^{2} F_{y}^{2}(\alpha)+F_{x}^{2}(s) \tan ^{2} \alpha}} \frac{\sqrt{s^{2} C_{\alpha}^{2}+(1-|s|)^{2} \cos ^{2} \alpha F_{x}^{2}(s)}}{s C_{\alpha}}$
Eq $2.21 \quad F_{y}(\alpha, s)=\frac{F_{x}(s) F_{y}(\alpha) \tan \alpha}{\sqrt{s^{2} F_{y}^{2}(\alpha)+F_{x}^{2}(s) \tan ^{2} \alpha}} \frac{\sqrt{(1-|s|)^{2} \cos ^{2} \alpha F_{y}^{2}(\alpha)+\sin ^{2} \alpha C_{s}^{2}}}{C_{s} \sin \alpha}$
$39 \quad$ line $15 \quad F_{x}(\alpha, s)=f F_{z} \sin \alpha$ should be $F_{x}(\alpha, s)=f F_{z} \cos \alpha$
line $16 \quad F_{x}(\alpha, s)=f F_{z} \cos \alpha$ should be $F_{y}(\alpha, s)=f F_{z} \sin \alpha$
line 17 . . . the values in Fig. 2.21 should be . . .

Table 2.1 Column 5, Sources, should be (top to bottom) . . .

Eq 3.6a $\quad d=-\frac{v_{0}^{2}}{2 a}=\frac{v_{0}^{2}}{2 f g}$
line $1 \quad \tau=\frac{-11.11}{-7.37}=1.51 \mathrm{~s}$
last line \quad The vehicle skids to a stop in $1.51 \mathrm{~s} \ldots$
line 3
$f_{r}=\frac{F_{t r}}{F_{z r}}=\frac{T / R_{w}}{F_{z r}}=\frac{1935 / 0.34}{13947}=0.408$

Typographical error
Typographical error
"the above table" should be replaced by "Fig. 2.21"
2.25, 2.36, 2.13, 2.13, NHTSA FMVSS, blank, USDOT FMCER 2.37, 2.37, 2.37, 2.37, 2.39, 2.40, 2.41
missing minus sign
incorrect denominator
$F_{t r}$ should be torque, T, divided by the rolling radius R_{w}

59	line 4	. equal to or higher than about 0.41 will allow	
63	line 9	$\sigma_{\tau}=\sigma_{P D R}=0.083$	incorrect decimal point
63	line 12	\ldots. . and a standard deviation of 0.083 s .	incorrect decimal point
66	Eq. 3.44	$\dot{y}=\dot{\theta}\left[b+\left(h_{c}-R\right) \theta\right]$	current/wrong equation is a repeat of Eq. 3.2
66	Eq. 3.50	$y(\tau)=c_{1}\left(e^{\eta_{1} \tau}-1\right)+c_{2}\left(e^{-\eta_{1} \tau}-1\right)+c_{3}\left(e^{2 \eta_{1} \tau}-1\right)+c_{4}\left(e^{-2 \eta_{1} \tau}-1\right)$	current/wrong equation is a repeat of Eq. 3.3
73	Eq. 4.1	$\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=R^{2}, \quad i=1,2,3$	current/wrong equation is a repeat of Eq. 4.4
150	Eq. 6.64	$\Delta V_{i}=\sqrt{\left(V_{i n}-v_{i n}\right)^{2}+\left(V_{i t}-v_{i t}\right)^{2}}$	
189	Eg. 7.9	$\mathrm{W}_{1}=2400 \mathrm{lb}(10.7 \mathrm{kN})$ and $\mathrm{W}_{2}=3350 \mathrm{lb}(14.9 \mathrm{kN})$	The vehicle weights should be switched in the problem statement
227	line 3	Value for d_{0} of 31.58 should be 46.31	
228	Eq. 9.4	$K_{2}=L\left[C_{1}+2\left(C_{2}+C_{3}+C_{4}+C_{5}\right)+C_{6}\right] / 10$	current/wrong equation is from Example 9.1
236	Eq. 9.15	$C_{\text {avg }}=\left[C_{1}+2\left(C_{2}+C_{3}+C_{4}+C_{5}\right)+C_{6}\right] / 10$	current/wrong equation is a repeat of Eq. 9.12
387		Reference numbers should begin at top of page 387 as 2.21 and	inue consecutively through 2.49 on page 389

