Vehicle Accident Analysis and Reconstruction Methods

Raymond M. Brach and R. Matthew Brach, SAE, 2010, 2nd Edition (R-397) January 20, 2024

page	Eq/Line	Correction (should be)	Comment
7	line 22	(33, 0.60) should be (32.0, 0.60)	
11	line 23 line 25	x should be \overline{x} x should be \overline{x}	
12	lines 1,3,5	x should be \overline{X}	
29	line 33 line 35	α , when $\alpha = \pi/2$ for any s . $\beta = \alpha$, $F_x = F\cos \alpha$, $F_y = -F\sin \alpha$	
35	Eq 2.20	$F_{x}(\alpha,s) = \frac{F_{x}(s)F_{y}(\alpha)s}{\sqrt{s^{2}F_{y}^{2}(\alpha) + F_{x}^{2}(s)\tan^{2}\alpha}} \frac{\sqrt{s^{2}C_{\alpha}^{2} + (1- s)^{2}\cos^{2}\alpha F_{x}^{2}(s)}}{sC_{\alpha}}$	
35	Eq 2.21	$F_{y}(\alpha,s) = \frac{F_{x}(s)F_{y}(\alpha)\tan\alpha}{\sqrt{s^{2}F_{y}^{2}(\alpha) + F_{x}^{2}(s)\tan^{2}\alpha}} \frac{\sqrt{(1- s)^{2}\cos^{2}\alpha F_{y}^{2}(\alpha) + \sin^{2}\alpha C_{s}^{2}}}{C_{s}\sin\alpha}$	
39	line 15	$F_r(\alpha,s) = fF_z \sin \alpha$ should be $F_r(\alpha,s) = fF_z \cos \alpha$	Typographical error
	line 16	$F_x(\alpha,s) = fF_z \cos \alpha$ should be $F_y(\alpha,s) = fF_z \sin \alpha$	Typographical error
40	line 17	the values in Fig. 2.21 should be	"the above table" should be replaced by "Fig. 2.21"
46	Table 2.1	Column 5, Sources, should be (top to bottom)	2.25, 2.36, 2.13, 2.13, NHTSA FMVSS, blank, USDOT FMCER 2.37, 2.37, 2.37, 2.37, 2.39, 2.40, 2.41
52	Eq 3.6a	$d = -\frac{v_0^2}{2a} = \frac{v_0^2}{2fg}$	missing minus sign
53	line 1	$\tau = \frac{-11.11}{-7.37} = 1.51 s$	incorrect denominator
53	last line	The vehicle skids to a stop in 1.51 s	
59	line 3	$f_r = \frac{F_{tr}}{F_{zr}} = \frac{T/R_w}{F_{zr}} = \frac{1935/0.34}{13947} = 0.408$	F_{tr} should be torque, T , divided by the rolling radius R_{w}

59	line 4	equal to or higher than about 0.41 will allow	
63	line 9	$\sigma_{_{ au}}=\sigma_{_{PDR}}=0.083$	incorrect decimal point
63	line 12	and a standard deviation of 0.083 s.	incorrect decimal point
66	Eq. 3.44	$\dot{y} = \dot{\theta}[b + (h_c - R)\theta]$	current/wrong equation is a repeat of Eq. 3.2
66	Eq. 3.50	$y(\tau) = c_1(e^{\eta_1 \tau} - 1) + c_2(e^{-\eta_1 \tau} - 1) + c_3(e^{2\eta_1 \tau} - 1) + c_4(e^{-2\eta_1 \tau} - 1)$	current/wrong equation is a repeat of Eq. 3.3
73	Eq. 4.1	$(x_i - a)^2 + (y_i - b)^2 = R^2, i = 1, 2, 3$	current/wrong equation is a repeat of Eq. 4.4
150	Eq. 6.64	$\Delta V_i = \sqrt{\left(V_{in} - v_{in}\right)^2 + \left(V_{it} - v_{it}\right)^2}$	
189	Eg. 7.9	$W_1 = 2400 \text{ lb } (10.7 \text{ kN}) \text{ and } W_2 = 3350 \text{ lb } (14.9 \text{ kN})$	The vehicle weights should be switched in the problem statement
227	line 3	Value for d_0 of 31.58 should be 46.31	Statement
228	Eq. 9.4	$K_2 = L[C_1 + 2(C_2 + C_3 + C_4 + C_5) + C_6]/10$	current/wrong equation is from Example 9.1
236	Eq. 9.15	$C_{avg} = [C_1 + 2(C_2 + C_3 + C_4 + C_5) + C_6]/10$	current/wrong equation is a repeat of Eq. 9.12
387 - 389		Reference numbers should begin at top of page 387 as 2.21 and continue consecutively through 2.49 on page 389	