Vehicle Accident Analysis and Reconstruction Methods

Raymond M. Brach and R. Matthew Brach, SAE, 2005 First Printing

August 10, 2012

page	Eq/Line	Correction
33	(2.32)	$F_{y}(\alpha, s)=\frac{F_{x}(s) F_{y}(\alpha)}{\sqrt{s F_{y}^{2}}(\alpha)+F_{x}(s)} \frac{\sqrt{(1-s)^{2} \cos ^{2} \alpha F_{y}^{2}(\alpha)+\sin ^{2} \alpha C_{s}^{2}}}{}$
	(2.32)	$F_{y}(\alpha, s)=\frac{F^{2}}{\sqrt{s^{2} F_{y}^{2}(\alpha)+F_{x}^{2}(s) \tan ^{2} \alpha}} \quad C_{s} \cos \alpha$
41	line 3	$\tau=\frac{-11.11}{-7.86}=1.4 \mathrm{~s}$
41	line 4	. . . skids to a stop in 1.4 s . . .
45	line 24	$f_{r}=\frac{F_{t r}}{F_{z r}}=\frac{T / R_{w}}{F_{z r}}=\frac{1935 / 0.34}{13947}=0.408$
48	line 9	calculation for μ_{s} has units ft / s
49	line 3	$\sigma_{d}=v_{0} \sigma_{\text {PDR }}=44 \times 0.833=3.65 \mathrm{ft}$
	line 5	$\sigma_{t}=\sigma_{\text {PDR }}=0.83 \mathrm{~s}$
	line 8	...and a standard deviation of 0.83 s .
47	Ex 3.4	grade is $5^{\circ}\left(f_{\text {eq }}=0.585\right)$
60	line 25	$F_{y}(s) \approx f_{y} F_{z}$
	(4.8)	$F_{y}(\alpha, s) \approx f_{y} F_{z}$
	(4.9)	$F_{x}(\alpha, s) \approx 0$
69	(5.2)	$f_{E}=f_{t} \sin \alpha+f_{p} \cos \alpha+\sin \theta$
77	Eq 5.8	$\frac{1}{2} I_{0} \dot{\theta}^{2}=m g\left(\sqrt{\left(\frac{T}{2}\right)^{2}+h^{2}}-h\right)$
77	Eq. 5.6	$V=\sqrt{2 g h \sqrt{\left(\frac{T}{2 h}\right)^{2}+1}-1}$
85	line 8	. . . using Eq. 5.15
93	last - 4	. . . lated using Eq. 5.15.
93	last	using Eq 5.12.
94	line 1	Equation 5.12 is used...
94	line 5	(Eq. 5.13)

Comment

subscript, s , and superscript, 2 , missing on C
incorrect number in denominator
skid time is 1.4 s , not 1.3 s
$F_{t r}$ should be torque, T, divided by the rolling radius R_{w}
units should be ft not ft / s
$\sigma_{d}=v_{0} \sigma_{\mathrm{PDR}}=44 \times 0.0833=3.65 \mathrm{ft}$
$\sigma_{t}=\sigma_{\mathrm{PDR}}=0.083 \mathrm{~s}$
...and a standard deviation of 0.083 s .
grade is not 5%
symbol for frictional drag coefficient is f, not μ
no subscript on α; frictional drag coefficient is f
no subscript on α
subscript on last f should be p
$\dot{\theta}$ should be squared
the 1 under the second square root should be positive
the equation number should be 5.15 , not 5.16
cited equation should be Eq. 5.15 , not Eq. 5.16
cited equation should be Eq. 5.12 , not Eq. 5.13
cited equation should be Eq. 5.12 , not Eq. 5.13
cited equation should be Eq. 5.13, not Eq. 5.14
last
$=9.18 \mathrm{~m} / \mathrm{s}$ should $\mathrm{be}=-9.18 \mathrm{~m} / \mathrm{s}$
(6.27) $\quad e_{k}=\sqrt{\frac{e_{1}^{2} k_{2}+e_{2}^{2} k_{1}}{k_{1}+k_{2}}}$
(6.65b) $\quad+\frac{1}{2} P_{t}\left[\left(v_{1 t}-d_{d} \omega_{1}\right)-\left(v_{2 t}+d_{b} \omega_{2}\right)+\left(V_{1 t}-d_{d} \Omega_{1}\right)-\left(V_{2 t}+d_{b} \Omega_{2}\right)\right]$
fig 7.16 units of speed for solid curve are ft / s
last \quad. . .range of $5.22 \mathrm{ft} / \mathrm{s}$ to $6.07 \mathrm{ft} / \mathrm{s}(2.3 \mathrm{~m} / \mathrm{s}$
first $\quad .$. . range of $-4.31 \mathrm{ft} / \mathrm{s}$ to $-4.93 \mathrm{ft} / \mathrm{s}(-1.9 \mathrm{~m} / \mathrm{s}$ to
last . . in Chapter 11. should be . . in Reference 6 of Chapter 7.
Sol'n A $\quad V=43.8 \mathrm{mph}(64.2 \mathrm{ft} / \mathrm{s}, 70.5 \mathrm{kph})$
Sol'n B $\quad ., C=0$ occurs at a speed of $V=6.85 \mathrm{mph}(10.1 \mathrm{ft} / \mathrm{s}$, $11.0 \mathrm{kph})$, when the kinetic energy is $7059.9 \mathrm{ft}-\mathrm{lb}(9.57 \mathrm{~kJ})$.

$$
\begin{aligned}
d_{0} & =\sqrt{\frac{2(7059.5)}{6.58}}=46.31, l b^{1 / 2} \\
d_{1} & =\frac{1}{C}\left(\sqrt{\frac{2 E_{C}}{w}}-d_{0}\right)=\frac{1}{3.5}\left(\sqrt{\frac{2(288,631)}{6.58}}-46.31\right) \\
& =71.39 \mathrm{lb} b^{1 / 2} / \mathrm{ft}\left(4.59 \mathrm{~N}^{1 / 2} / \mathrm{cm}\right)
\end{aligned}
$$

line $21 \ldots$ should not be computed by Eq 8.10.
line 12 Equation 8.14 gives $d_{l} \ldots$
line 6 ... methods, but this is not done here.
last-5 $\quad \ldots$ from $\tau=\tau_{0}$ to $\tau=\tau_{\mathrm{c} 1} \ldots$
Eq 9.9 $\quad \tau_{R}=\frac{v_{p 0} \sin \theta}{g \cos \varphi}+\frac{\sqrt{\nu_{p 0}^{2} \sin ^{2} \theta+2 g h \cos \varphi}}{g \cos \varphi}$
line 4 ... two lines in three dimensional space.
(10.4b) $y_{m}=\frac{c_{6}+c_{7} x_{p}+c_{8} y_{p}}{c_{4} x_{p}+c_{5} y_{p}+1}$

T 4, line 4 Insert: No more than two of the four points can be collinear. Sentence was omitted.

Vehicle Accident Analysis and Reconstruction Methods

Raymond M. Brach and R. Matthew Brach, SAE, 2005, Second Printing

August 10, 2012

page	Eq/Line	Correction
45	line 24	$f_{r}=\frac{F_{t r}}{F_{z r}}=\frac{T / R_{w}}{F_{z r}}=\frac{1935 / 0.34}{13947}=0.408$
47	Ex 3.4	grade is $5^{\circ}\left(f_{e q}=0.585\right)$
48	line 9	calculation for μ_{s} has units ft / s
49	line 3	$\sigma_{d}=v_{0} \sigma_{\text {PDR }}=44 \times 0.833=3.65 \mathrm{ft}$
	line 5	$\sigma_{t}=\sigma_{\text {PDR }}=0.83 \mathrm{~s}$
	line 8	...and a standard deviation of 0.83 s .
60	line 25	$F_{y}(s) \approx f_{y} F_{z}$
	(4.8)	$F_{y}(\alpha, s) \approx f_{y} F_{z}$
	(4.9)	$F_{x}(\alpha, s) \approx 0$
77	Eq 5.8	$\frac{1}{2} I_{0} \dot{\theta}^{2}=m g\left(\sqrt{\left(\frac{T}{2}\right)^{2}+h^{2}}-h\right)$
77	Eq. 5.6	$V=\sqrt{2 g h \sqrt{\left(\frac{T}{2 h}\right)^{2}+1}-1}$
85	line 8	\ldots. . using Eq. 5.15
115	(6.27)	$e_{k}=\sqrt{\frac{e_{1}^{2} k_{2}+e_{2}^{2} k_{1}}{k_{1}+k_{2}}}$
125	(6.65b)	$+\frac{1}{2} P_{t}\left[\left(v_{1 t}-d_{d} \omega_{1}\right)-\left(v_{2 t}+d_{b} \omega_{2}\right)+\left(V_{1 t}-d_{d} \Omega_{1}\right)-\left(V_{2 t}+d_{b} \Omega_{2}\right)\right]$
150	last	. . .range of $5.22 \mathrm{ft} / \mathrm{s}$ to $6.07 \mathrm{ft} / \mathrm{s}(2.3 \mathrm{~m} / \mathrm{s}$
151	first	.. .range of $-4.31 \mathrm{ft} / \mathrm{s}$ to $-4.93 \mathrm{ft} / \mathrm{s}(-1.9 \mathrm{~m} / \mathrm{s}$ to
154	Sol'n A	$V=43.8 \mathrm{mph}(64.2 \mathrm{ft} / \mathrm{s}, 70.5 \mathrm{kph})$

Comment

$F_{t r}$ should be torque, T, divided by the rolling radius R_{w}
grade is not 5\%
units should be ft not ft / s
$\sigma_{d}=v_{0} \sigma_{\mathrm{PDR}}=44 \times 0.0833=3.65 \mathrm{ft}$
$\sigma_{t}=\sigma_{\mathrm{PDR}}=0.083 \mathrm{~s}$
...and a standard deviation of 0.083 s .
symbol for frictional drag coefficient is f, not μ no subscript on α; frictional drag coefficient is f no subscript on α
$\dot{\theta}$ should be squared
the 1 under the second square root should be positive
the equation number should be 5.15 , not 5.16
missing square root sign
$V_{2 t}$ in second parenthesized term should be lower case
units should be ft / s not mph units should be ft/s not mph units in the equation in Figure 8.1 are mph

Sol'n B . . , $C=0$ occurs at a speed of $V=6.85 \mathrm{mph}(10.1 \mathrm{ft} / \mathrm{s}$, $11.0 \mathrm{kph})$, when the kinetic energy is $7059.9 \mathrm{ft}-\mathrm{lb}(9.57 \mathrm{~kJ})$.

$$
\begin{aligned}
d_{0} & =\sqrt{\frac{2(7059.5)}{6.58}}=46.31, l b^{1 / 2} \\
d_{1} & =\frac{1}{C}\left(\sqrt{\frac{2 E_{C}}{w}}-d_{0}\right)=\frac{1}{3.5}\left(\sqrt{\frac{2(288,631)}{6.58}}-46.31\right) \\
& =71.39 \mathrm{lb}^{1 / 2} / \mathrm{ft}\left(4.59 \mathrm{~N}^{1 / 2} / \mathrm{cm}\right)
\end{aligned}
$$

$$
\text { last-5 } \quad \ldots \text { from } \tau=\tau_{0} \text { to } \tau=\tau_{c l} \ldots
$$

$$
\text { Eq } 9.9 \quad \tau_{R}=\frac{v_{0} \sin \theta}{g \cos \varphi}+\frac{\sqrt{v_{o p}^{2} \sin ^{2} \theta+2 g h \cos \varphi}}{g \cos \varphi}
$$

- 4, line 4 Insert: No more than two of the four points can be collinear.
units in the equation in Figure 8.1 are mph
s_{1} begins when s_{0} ends
second equal sign should be a plus sign
Sentence was omitted.

