R. M. Brach and P. F. Dunn

February 2008

page	Eq/line	Correction Comme
23	Eq 3.3	$p(A \mid B)=\frac{p(A \cap B)}{p(B)}$
23	Eq 3.4	$p(A \cap B)=p(A \mid B) p(B)$
23	17	\ldots, then $p(A \mid B)=0$, which .
23	Eq 3.7	$p(A \mid B)=p(A)$
32	1-3	In that figure, the open squares represent values of an arbitrary discrete signal, the open circles form a representative digital signal and the solid curve is a representative analog signal.
39	21	Let us determine $f(x)$ by finding the probability that $x(t)$ is in the range x to $x+\Delta x$ over ...
40	Eq 3.29	$f(x)=\frac{1}{T} \lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \sum_{j=1}^{m}\left[\Delta t_{j}\right]$
52	13	\ldots. . is one-sided because it represents an integral from .
58	Eq 3.64	$t_{1}=(x-\bar{x}) / s_{x}$
58	10	It follows that there is a $\% P$ probability that the normally distributed variable x_{i} in a small sample will be within $\pm t_{v, P}$ sample standard deviations from the sample mean.
60	5	The values for $t_{v, P}$ are given in Table 3.6.
60	16	It follows from Eq 3.66 that . . .
61	Ex 3.3	Cloth A: $\quad 3.0806,3.0232,2.9010,3.1340,3.0290$
		3.1479, 3.1138, 2.9316, 2.8708, 2.9927
		Cloth B: $\quad 2.9820,2.9902,3.0728,2.9107,2.9775$
		2.9348, 2.9881, 3.2303, 2.9090, 2.7979
		$P_{\text {true }}=2 P\left(d_{A-B}>0.795\right)=2\left[1-P\left(d_{A-B} \leq 0.795\right)\right]=$
61	Ex 3.3	$=50+\frac{0.795-0.703}{1.833-0.703}(90-50)=53.3 \%$

lower case p symbol is used for probability
intersection of A and B on left side, not union;
probability of A given $B, A \mid B$, on right side
should be $p(A \mid B)$, not $p(A / B)$
this is the probability of A given B
missing $x+\Delta x$
extraneous equal sign
change "to" to "an"
change equal sign to a minus sign
$\operatorname{missing} t_{v, P}$
"Eq 3.68" should be "Eq 3.66"
missing data
I should be a one; interpolated answer is 53.3%

page	Eq/line	Correction
63	23	Now each \bar{x}_{j} is a random variable.
66	Eq 3.83	$\chi^{2}=\sum_{i=1}^{n} z_{i}^{2}=\sum_{i=1}^{n} \frac{(x-\mu)^{2}}{\sigma^{2}}$
67	Eq 3.84	$\chi^{2}=\nu s_{x}^{2} / \sigma^{2}$
67	-8	n degrees
68	3	is, when $v=20,5 \%$ of all
70	11-12	. . . exceeds the value based upon
79	26	scatter
87	Eq 4.18	$u_{r}^{2} \cong \sum_{i=1}^{J}\left(\theta_{i}\right)^{2} u_{x_{i}}^{2}+2 \sum_{i=1}^{J-1} \sum_{j=i+1}^{J}\left(\theta_{i}\right)\left(\theta_{j}\right) u_{x_{i} x_{j}}$
87	Eq 4.19	$u_{x_{i}, x_{j}}=\sum_{k=1}^{L}\left(u_{i}\right)_{k}\left(u_{j}\right)_{k}$
88	3	Equation 4.21 is the Welsh-Satterthwaite formula
89	8	$u_{\Delta P_{A}}^{2}=u_{P_{1}}^{2}+u_{P_{2}}^{2}$
89	mid page	$=(0.3)(0.3)+(0.5)(0.5) \cong 0.3 \%$
90	-6	Examples of e_{i} are linearity, hysteresis, sensitivity,
94	7	$\left(u_{d}\right)_{m p}=\sqrt{\left[\left(u_{d}\right)_{t}\right]^{2}+\left[\left(u_{d}\right)_{p m}\right]^{2}}$
96	mid page	$u_{e}=\sqrt{\left(\frac{\partial e}{\partial h_{b}} u_{h_{b}}\right)^{2}+\left(\frac{\partial e}{\partial h_{a}} u_{h_{a}}\right)^{2}}$
99	-4	$u_{\rho}=\sqrt{\left(\frac{\partial \rho}{\partial T} u_{T}\right)^{2}+\left(\frac{\partial \rho}{\partial P} u_{P}\right)^{2}}$
100	top	$u_{\rho}=\sqrt{\left(\frac{-P}{R T^{2}} u_{T}\right)^{2}+\left(\frac{1}{R T} u_{P}\right)^{2}}$
101	8	$\rho(0.1 \%)$

Eq 3.83

Eq 3.84

3
11-12
26
Eq 4.18

Eq 4.19

3

8
mid page
-6
mid page
-4

8

Correction

Now each \bar{x}_{j} is a random variable.
$\chi^{2}=\sum_{i=1}^{n} z_{i}^{2}=\sum_{i=1}^{n} \frac{(x-\mu)^{2}}{\sigma^{2}}$
$\chi^{2}=v s_{x}^{2} / \sigma^{2}$
is, when $v=20,5 \%$ of all \ldots
. . . exceeds the value based upon . .
scatter
$u_{r}^{2} \cong \sum_{i=1}^{J}\left(\theta_{i}\right)^{2} u_{x_{i}}^{2}+2 \sum_{i=1}^{J-1} \sum_{j=i+1}^{J}\left(\theta_{i}\right)\left(\theta_{j}\right) u_{x_{i} x_{j}}$
$u_{x_{i}, x_{j}}=\sum_{k=1}^{L}\left(u_{i}\right)_{k}\left(u_{j}\right)_{k}$
Equation 4.21 is the Welsh-Satterthwaite formula
$u_{\Delta P_{A}}=u_{P_{1}}^{2}+u_{P_{2}}^{2}$

Examples of e_{i} are linearity, hysteresis, sensitivity, . .
$\left(u_{d}\right)_{m p}=\sqrt{\left[\left(u_{d}\right)_{t}\right]^{2}+\left[\left(u_{d}\right)_{p m}\right]^{2}}$
$u_{e}=\sqrt{\left(\frac{\partial e}{\partial h_{b}} u_{h_{b}}\right)^{2}+\left(\frac{\partial e}{\partial h_{a}} u_{h_{a}}\right)^{2}}$
$u_{\rho}=\sqrt{\left(\frac{\partial \rho}{\partial T} u_{T}\right)^{2}+\left(\frac{\partial \rho}{\partial P} u_{P}\right)^{2}}$
$\rho(0.1 \%)$

Comment

$\chi^{2}, \operatorname{not} x^{2} ;$ also summation limits are $n, \operatorname{not} N$
v not n
not $ข \delta \varepsilon \gamma \rho \varepsilon \varepsilon \sigma$
5%, not 50%
delete "of"
remove apostrophe
approximation
not Eq 4.10
delete second "linearity"
ρ not r
101 mid page $\quad\left(\frac{u_{m}}{|m|}\right)_{A}=\sqrt{\left(\frac{u_{W}}{W}\right)^{2}+\left(\frac{u_{g}}{g}\right)^{2}}=\sqrt{(0.020)^{2}+(0.001)^{2}}=2.0 \%$
101 lower page $\quad\left(\frac{u_{m}}{|m|}\right)=\sqrt{\left(\frac{u_{\rho}}{\rho}\right)^{2}+\left(\frac{u_{V}}{V}\right)^{2}}=\sqrt{(0.001)^{2}+(0.017)^{2}}=0.017=1.7 \%$

page	Eq/line	Correction
101	-4	in g and ρ both . .
102	-1	4.22
103	Eq 4.46	$v_{r}=\frac{\left[\sum_{i=1}^{J} \theta_{i}^{2}\left(S_{B_{i}}^{2}+S_{P_{i}}^{2}\right]^{2}\right.}{\sum_{i=1}^{J}\left\{\left(\theta_{i}^{4} S_{P_{i}}^{4} / v_{P_{i}}+\left[\sum_{k=1}^{M_{B}} \theta_{i}^{4}\left(S_{B_{i}}\right)_{k}^{4} / v_{\left(S_{\left.B_{i}\right)_{k}}\right.}\right]\right\}\right.}$
108	-1	$N_{P_{3}}=9 \Rightarrow v_{P_{3}}=8$
109	1	Assume 100\% reliability in the values
109	equ	$S_{\bar{P}}^{2}=\frac{S_{P_{1}}^{2}}{N_{P_{1}}}+\frac{S_{P_{2}}^{2}}{N_{P_{2}}}+\frac{S_{P_{3}}^{2}}{N_{P_{3}}}=\frac{4.6^{2}}{15}+\frac{10.3^{2}}{38}+\frac{1.2^{2}}{9}=4.4 \mathrm{~N}^{2} / \mathrm{cm}^{4}$
109	15	$t_{54,95} \cong 2$.
109	-9	$\sigma^{\prime}=\bar{\sigma} \pm U_{\sigma} \quad$ where $U_{\sigma}=t_{54,95} \cdot u_{\sigma}=6.2 \mathrm{~N} / \mathrm{cm}^{2}$ (95\%)
110	9	$\bar{P}=2253.91 \mathrm{psfa}$
110	mid pg	$\bar{\rho}=\frac{\bar{P}}{R \bar{T}}=0.074 \mathrm{lbm} / \mathrm{ft}^{3}$
110	bot	$S_{\bar{P}}=\sqrt{\left(\frac{\partial \rho}{\partial T} S_{P_{T}}\right)^{2}+\left(\frac{\partial \rho}{\partial P} S_{P_{\bar{P}}}\right)^{2}}=\sqrt{\left(\frac{-\bar{P}}{R \bar{T}^{2}} S_{P_{P_{T}}}\right)^{2}+\left(\frac{1}{R \bar{T}} S_{P_{\bar{P}}}\right)^{2}}$
112	15	$U_{x}=2 u_{C}$
114	Eq 4.60	$f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\frac{(\Delta x)^{2}}{2} f^{\prime \prime}(x)+\frac{(\Delta x)^{3}}{2} f^{\prime \prime \prime}(x)+\ldots$
115	Eq 4.62	$f^{\prime}(x)=\frac{f(x)-f(x-\Delta x)}{\Delta x}+\frac{\Delta x}{2} f^{\prime \prime}(x)-\frac{(\Delta x)^{2}}{6} f^{\prime \prime \prime}(x) \ldots$

Comment

ρ not r
reference to Eq 4.22
last entry in table insert the word reliability

