Uncertainty Analysis for Forensic Science, Lawyers & Judges, 2003 R. M. Brach and P. F. Dunn

February 2008

page	Eq/line		Comment	
23	Eq 3.3	$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$	lower case p symbol is used for probability	
23	Eq 3.4	$p(A \cap B) = p(A \mid B)p(B)$	intersection of A and B on left side, not union; probability of A given B, A B, on right side	
23	17	\dots , then $p(A B) = 0$, which \dots	should be $p(A B)$, not $p(A/B)$	
23	Eq 3.7	$p(A \mid B) = p(A)$	this is the probability of A given B	
32	1-3	In that figure, the open squares represent values of an arbitrary discrete signal, the open circles form a representative digital signal and the solid curve is a representative analog signal.		
39	21	Let us determine $f(x)$ by finding the probability that $x(t)$ is in the range x to $x + \Delta x$ over	missing $x + \Delta x$	
40	Eq 3.29	$f(x) = \frac{1}{T} \lim_{\Delta x \to 0} \frac{1}{\Delta x} \sum_{j=1}^{m} \left[\Delta t_j \right]$	extraneous equal sign	
52	13	is one-sided because it represents an integral from	change "to" to "an"	
58	Eq 3.64	$t_1 = (x - \overline{x}) / s_x$	change equal sign to a minus sign	
58	10	It follows that there is a % P probability that the normally distributed variable x_i in a small sample will be within $\pm t_{v,P}$ sample standard deviations from the sample mean.		
60	5	The values for $t_{v,P}$ are given in Table 3.6.	missing $t_{v,P}$	
60	16	It follows from Eq 3.66 that	"Eq 3.68" should be "Eq 3.66"	
61	Ex 3.3	Cloth A: 3.0806, 3.0232, 2.9010, 3.1340, 3.0290 3.1479, 3.1138, 2.9316, 2.8708, 2.9927 Cloth B: 2.9820, 2.9902, 3.0728, 2.9107, 2.9775 2.9348, 2.9881, 3.2303, 2.9090, 2.7979 $P_{true} = 2P(d_{A-B} > 0.795) = 2[1 - P(d_{A-B} \le 0.795)] =$	missing data	
61	Ex 3.3	$= 50 + \frac{0.795 - 0.703}{1.833 - 0.703} (90 - 50) = 53.3 \%$	<i>I</i> should be a one; interpolated answer is 53.3%	

page	Eq/line	Correction	Comment
63	23	Now each \overline{x}_j is a random variable.	
66	Eq 3.83	$\chi^{2} = \sum_{i=1}^{n} z_{i}^{2} = \sum_{i=1}^{n} \frac{(x-\mu)^{2}}{\sigma^{2}}$	χ^2 , not x^2 ; also summation limits are n , not N
67	Eq 3.84	$\chi^2 = v s_x^2 / \sigma^2$	v not n
67	-8	n degrees	not ν δεγρεεσ
68	3	is, when $v = 20$, 5% of all	5 %, not 50 %
70 70	11-12	exceeds the value based upon	delete "of"
79	26	scatter	remove apostrophe
87	Eq 4.18	$u_r^2 \cong \sum_{i=1}^{J} (\theta_i)^2 u_{x_i}^2 + 2 \sum_{i=1}^{J-1} \sum_{i=i+1}^{J} (\theta_i)(\theta_j) u_{x_i x_j}$	approximation
87	Eq 4.19	$u_{x_i,x_j} = \sum_{k=1}^{L} (u_i)_k (u_j)_k$	
88	3	Equation 4.21 is the Welsh-Satterthwaite formula	not Eq 4.10
89	8	$u_{\Delta P_A}^2 = u_{P_1}^2 + u_{P_2}^2$	
89	mid page	$= (0.3)(0.3) + (0.5)(0.5) \approx 0.3\%$	
90	-6	Examples of e_i are linearity, hysteresis, sensitivity,	delete second "linearity"
94	7	$(u_d)_{mp} = \sqrt{[(u_d)_t]^2 + [(u_d)_{pm}]^2}$	
96	mid page	$u_e = \sqrt{\left(rac{\partial e}{\partial h_b}u_{h_b} ight)^2 + \left(rac{\partial e}{\partial h_a}u_{h_a} ight)^2}$	
99	-4	$u_{\rho} = \sqrt{\left(\frac{\partial \rho}{\partial T} u_{T}\right)^{2} + \left(\frac{\partial \rho}{\partial P} u_{P}\right)^{2}}$	
100	top	$u_{\rho} = \sqrt{\left(\frac{-P}{RT^2}u_T\right)^2 + \left(\frac{1}{RT}u_P\right)^2}$	
101	8	ρ (0.1 %)	ρ not r

101 mid page
$$\left(\frac{u_m}{|m|}\right)_A = \sqrt{\left(\frac{u_W}{W}\right)^2 + \left(\frac{u_g}{g}\right)^2} = \sqrt{(0.020)^2 + (0.001)^2} = 2.0\%$$
101 lower page
$$\left(\frac{u_m}{|m|}\right) = \sqrt{\left(\frac{u_\rho}{\rho}\right)^2 + \left(\frac{u_V}{V}\right)^2} = \sqrt{(0.001)^2 + (0.017)^2} = 0.017 = 1.7\%$$

page	Eq/line	Correction	Comment
101 102	-4 -1	in g and ρ both 4.22	ρ not r reference to Eq 4.22
103	Eq 4.46	$v_{r} = \frac{\left[\sum_{i=1}^{J} \theta_{i}^{2} (S_{B_{i}}^{2} + S_{P_{i}}^{2})\right]^{2}}{\sum_{i=1}^{J} \left\{ (\theta_{i}^{4} S_{P_{i}}^{4} / v_{P_{i}} + \left[\sum_{k=1}^{M_{B}} \theta_{i}^{4} (S_{B_{i}})_{k}^{4} / v_{(S_{B_{i}})_{k}}\right] \right\}}$	reference to Eq 4.22
108	-1	$N_{P_3} = 9 \Rightarrow \nu_{P_3} = 8$	last entry in table
109	1	Assume 100% reliability in the values	insert the word reliability
109	equ	$S_{\bar{P}}^2 = \frac{S_{P_1}^2}{N_{P_1}} + \frac{S_{P_2}^2}{N_{P_2}} + \frac{S_{P_3}^2}{N_{P_3}} = \frac{4.6^2}{15} + \frac{10.3^2}{15} + \frac{1.2^2}{9} = 4.4 \ N^2 / cm^4$	
109	15	$t_{54,95}\cong 2.$	
109	-9	$\sigma' = \overline{\sigma} \pm U_{\sigma}$ where $U_{\sigma} = t_{54.95} \cdot u_{\sigma} = 6.2 \ N/cm^2$ (95%)	
110	9	$\overline{P} = 2253.91$ psfa	
110	mid pg	$\overline{\rho} = \frac{\overline{P}}{R\overline{T}} = 0.074 \text{ lbm/ft}^3$	
110	bot	$S_{\overline{ ho}} = \sqrt{\left(rac{\partial ho}{\partial T} S_{P_{\overline{ ho}}} ight)^2 + \left(rac{\partial ho}{\partial P} S_{P_{\overline{ ho}}} ight)^2} = \sqrt{\left(rac{-\overline{P}}{R\overline{T}^2} S_{P_{\overline{ ho}}} ight)^2 + \left(rac{1}{R\overline{T}} S_{P_{\overline{ ho}}} ight)^2}$	
112	15	$U_x = 2u_C$	
114	Eq 4.60	$f(x + \Delta x) = f(x) + \Delta x f'(x) + \frac{(\Delta x)^2}{2} f''(x) + \frac{(\Delta x)^3}{2} f'''(x) + \dots$	
115	Eq 4.62	$f'(x) = \frac{f(x) - f(x - \Delta x)}{\Delta x} + \frac{\Delta x}{2} f''(x) - \frac{(\Delta x)^2}{6} f'''(x)$	sign of second term

116 Eq 4.63
$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} - \frac{(\Delta x)^2}{6} f'''(x) + \dots$$

117 Eq 4.68
$$e_d = \sum_{i=1}^{N} E_i$$
 $i = 1$ on lower sum

125 Eq 5.4
$$\sigma_y^2 = a^2 \sigma_x^2$$
 x is a subscript

162 Eq 6.15
$$ME_j = ME_l, j \neq l$$
 missing \neq