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SYNOPSIS 

Principles of Impulse and Momentum frequently are userl to sturly vehicle 

collisions. In some applications, angular rotations ilre neglected completely; , in 

others, rotational velocity changes are treated approximately. In this paper, a 

moment over the crush surface is related to the angular velocity changes and its 

significance is evaluated with data from experimental collisions. Another 

feature of Impulse and Momentum models is the treatment of friction. It is shown 

that a maximum exists for the friction coefficient along with a corresponrling 

maximum kinetic energy loss. This is discusserl in general as well as how it 

leads to a simple equation for velocity change prerliction. 

1 INTROOUCTION 

Many technical papers have appearerl which rliscuss the use of the theory of 

impulse anrl mornent11m for analyzing vehicle collisions. n11e of the erirliest, hy 

Emori 1 in 1 %8, laid out somP of the funrlamenta ls on which later st11rli es could 

build. Grime and Jones2, published the most thorough work of its time. Not only 

were equations developed for vehicle velocity changes, h11t occupant motion was 

also treated. Experimental results were provided for vehicle properties, 

collision energy losses for certain types of collisions anrl typically encountererl 

parameters such as coefficients of friction and restitution. In 1Q77, Brach3 

presented a complete set of equations for the planar impact of two vehicles. 

Rasically theoretical, this 1vork yielded six li11ear algebraic equations which 

relate the six initial velocity components (t hree for each vehicle), six final 

velocity components, vehicle inertial anrl geomet rical properties and the 

collision geometry. A unique feature of this paper was the recognition that the 
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impulse of a moment must be includerl over the common area of contact. This lerl 

to the rlefinition of a moment coefficient of restitution, em· No experimental 

evidence anrl only a few values 1vere furnisherl for this coefficient at thnt tirne. 

nuring the mid and late 1970's, a group of experimental collisions was 

conducted for the U.S. National ~ighway Traffic Safety Arlministration 4 • These 

were a rather comprehensive set of two-vehicle collisions with various 

configurations, initial speeds anrl vehicles. These collisions were not only well 

conducted and well documented but are the first set of collisions which recorded 

angular velocity changes. In 1983, a paper was publisherl5 which used the method 

of least squares to fit the data from the NHTSA collisions to the planar 

collision model of Brach. This fitting procedure furnished values of the 

classical restitution coefficient, e, an equivalent friction coefficient, µ , and 

the moment coefficient em· Unfortunately, a sign error crept into the moment 

equation3,5 which caused small errors in the coefficient values. The proper 

results are included in this paper. 

Some seemingly strange solutions of the six-equation planar model occur 

when the equivalent coefficient of friction is varied. r.areful examination of 

this behavior led to some interesting theoretical results of the mechanics of 

rigid body impacts6. ~pecifically, it was found that a maximum friction -

coefficient anrl a corre_s.p_Qfl_cii_Qg ___ d'!1.aLi_I11Yf!l __ g_n_~t.9Y_JQ?~-~~_i5t for: __ ~'])' given 
collision. In the work to fol1ov1, the concepts of moment impulse, moment 

coefficient, maximum friction coefficient and maximum energy loss are reviewed. 

Rased upon these concepts, new results are obtained from fitting of the NHTSA 

collisions to the six-equation planar model. 

It was recognized5 that the velocity change magnit11de, t;..V, of each vehicle 

is predictable by means of an empirical formula. In this paper a theoretical 

founrlation is presented for this formula. 

2 PLANAR RIGID BODY IMPACT MECHANICS 

Newton's second law states simply that the resultant force on a particle 

is equal to the product of mass and acceleration. Extensions to rigid body 

motion and angular rotations are well known. When integrated over an arbitrary 

time interval the laws relate impulse and change in momentum. The integrated 

form of Newton's law is convenient for modelling impacts, rrovided some 

assumptions are satisfied. 

a. The resultant intervehicular impulse is much larger thnn the impulses 

of other forces. Thus, during contact, f0rces such as fri ct.ion with the 

grounrl, drive train drag and aerodynamic drag ~re neglected. 



b. The resultant impulse vector of the intervehicular force (a surface 

force) acts at a single unique position called the center of impact. 

ThP location of this point is assumed to he known. 

c. Changes in the position·of the mass center and changes in angular 

orientation are small over the time interval of contact. 

rl. A hypothetical, fixerl contact surfacP is presumed with the following 

properties. Motion normal to this surface is due to deformation (crush). 

Motion parallel to this surface has the nature of relative motion analgous 

to frictional sliding. 

e. The time duration of contact is smal 1. 

Ry itself, Newton's law expressed in impulse/momentum form does not possess any 

restriction on time duration. Vehicular collisions typically have contact times 

of 0.1 s to 0.2 s. Time intervals of this magnitude, coupled with the assumption 

of large forces cause large accelerations, finite velocity changes and small 

displacements. All of these taken together usually cause the ahove assumptions 

to be satisfied for the study of vehicle collisions. 

Fig 1 shows free body diagrams of two vehicles. The symbol P represents 

the resultant vector impulse with components Px and Py expressed in the inertial 

x-y frame. Because the intervehicular impact force acts over a surface, a moment 

or couple exists. The impulse of the moment is represented by~ and is discussed 

more thoroughly in the next section. 

A classical approach to the planar, rigid body impact problem reveals 

ttlree unknown final velocity components for each rigirl body for a total of six. 

Thus Vtx• V1y. a1, V2x• V2y. and a2 are the six unknowns* while the corresponding 

initial velocity components, VIx• Vly• w1, v2x, v2y and w2 are presumed known. ~ 

proper solution can be obtained with six equations. Since a complete derivation 

of the six equations of a planar impact has heen presented elsehwere,3,5 along 

with an analytical solution6, they are simply listed here in an Appendix. 

3 STAGED COLLISIONS AND DATA ANALYSIS 

A full set of data is available from 11 collisions4 which can be grouped 

into 4 collision catagories. These are illustrated in Fig 2 along with the 

original collision numbers. Other information such as vetlicle physical data, 
initial speeds, etc., are contained in earlier works4,5. 

* Final velocity components are capitalized throughout this paper; initial 
velocity components are in lower case. 



The procPrl11rP used to fit the ~xperimental data to the equations7 in the 

Appenrlix is basprl 11pon the principle of least squares. It furnishes rlirectly the 

three coefficients, e, em, and µand corresronding final velocity components. 

These velocities differ from the ekperimental values but satisfy conservation of 

momentum and the other impact equations. Table 1 contains some of the basic 

results; various detailed aspects of the information contained in this Table are 

discussed throughout this paper. 

4 MOMENT IMPULSE AND MOMENT COEFFICIENT 

One novel feature of the impact equations in the Appendix is the provision 

for treating an impact moment impulse, M. Some authors claim that it is not 

necessary to introduce this moment impulse into the problem as its presence 

merely shifts the line of action of the impulse P. Actually, the absence of M 

can shift the line of action of P away from the true center of impact. A moment 

impulse can occur during a collision due to momentary or permanent interlocking 

of parts. A moment impulse can also be created in a collision analysis by a 

choice of impact center remote from its true location. The moment impulse cannot 

be omitted indiscriminately. A proper question relates not to the existance of M 

but rather its significance and its relationship to the moment coefficient. 

The definition3 of the moment coefficient, em, allows it to have the 

values of +1 or -1 ( em~ O. An alternative, e' = -em can be defined6. In 

either case, em or e' has properties for rotational velocities which the 

classical coefficient of restitution, e, has for translational velocities. 

Specifically, em = +1 requires that M = 0, em = 0 represents a totally inelastic 

angular impact (~1 = ~z) and em=-1 represents a totally elastic angular impact. 

Both Mand em depend directly upon the analyst's choice of the location of the 

impact center, i.e., the location of the point of application of Px and Py on 

each vehicle. These points are typically known with little accuracy. Reference 

to Fig 1 shows that the distances dl and d2 and angles ¢1 and ¢2 determine the 

impact center. For the results in Table 1 d1, d2, ¢1, and ¢2 were chosen with 

the aid of photographs and scaled deformation diagrams4. In order to assess the 

effects of including a moment in the the impact equations, two sets of least 

sq11are analyses were conducted. Table 1-A shows results for em constrained 

between -1 and 0 during the fitting proced11re. Tahle 1-R shows the results for 

em= 1 (M=O). Generally speaking, the smaller the sum of squares, the hetter the 

data fits the equations. For collisions 1, R, g and 10, the condition of M = O 

yields a better fit, For all other eq11ations, M ~ 0 provides a lower, minimum 
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TABLE 1 RESULTS FROM ELEVEN EXPERIMENTAL COLLISIONS 

A. NON-ZERO MOMENT IMPULSE, H 

COLLISION 6 7 8 9 10 11 12 3 5 

MINIMUM SUM OF SQUARES 95.5 101. 7 203.3 77.6 275.0 750. 7 10.2 31. 7 19.2 85.7 106.5 

ENERGY LOSS, Y. 58.2 48.2 48.8 39.5 42.4 43.5 92.2 93.3 34. l 36.3 32.3 

RESTITUTION COEFFICIENT .ooo .000 .000 . 034 .091 .133 • 000 .102 .223 .045 .056 

MOMENT COEFFICIENT .000 -.997 -.815 .ooo .ooo .000 .ooo -.012 -.747 -.517 -.001 

FRICTION COEFFICIENT .922 .872 • 778 .500 .809 .837 .025 .020 -.052 -.042 -.071 

B. ZERO MOMENT IMPULSE, M 

COLLISION 6 7 8 9 l 0 11 12 3 5 

MINIMUM SUM OF SQUARES 55.4 198.2 221.5 61. 3 29.8 100.6 21. 8 75.0 29.2 96.2 115.6 

ENERGY LOSS, I. 52.0 48.2 48.8 36.0 28.9 31. 0 90.9 91. 9 34.2 36.3 32.0 

RESTITUTION COEFFICIENT . 000 .ooo .000 .079 .400 • 419 .ooo .100 .217 .045 .053 

MOMENT COEFFICIENT 

FRICTION COEFFICIENT .966 .824 . 772 .413 .486 .590 .038 .031 -.065 -.050 -.090 
. ..:-.. 

TABLE 2 VARIATIONS OF ANALYSIS OF COLLISION 6 
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101. 7 48.2 2.56 0.61 -17.9 -90,0 447 88 121 4.6 7.6 4.1 6.6 J. 35 -0.48 0 -0.997 0.872 

2 198.3 48.2 2.56 0.6! -17.9 -90.0 451 75 0 4.6 7.6 4.1 6.6 1. 74 -1. 60 0 0.824 

3 145.7 49.4 2.44 0.76 -15.0 -90.0 456 83 4 4.7 7. 7 4.1 6.6 l. 50 -1.11 0 -0.459 o. 849 

4 97.2 46.9 2.56 0.69 -25.0 -60.0 468 86 324 4.8 7,9 4.1 6.6 !. 09 -0.21 0 -0.709 0.851 

* EXPERIMENTAL VALUES ,-_ 



sum of squares. To provide rnore insight, Collision n was analyzed in more 

detail. A fev~, unsystematic changes were mn.rle in d1, d2, tJ>l and <f>2 and the least 

SCJuare fitting procedure repeated. Results are shown in Tahle 2. Rows 1 anrl 2 

in Table 2 correspond to the conditions in Table 1 for Collision 6. Rows 3 anrl 4 

are for different impact points. 

Another aspect of angular velocities concerns rotational kinetic energy. 

Note the initial angular velocity of all vehicles in all NHTSA collisions was 

zero. Rotational energy was as high as 75% of final energy in one case and 

values of 25% to 30% are typical. So from an energy point of view, rotational 

velocities are not always negligible. 

Rased upon comparisons among Tables lA, lR, 2 and previous work not 

reported here and from the point of view of least square fitting of experimental 

data: 

1. Small changes in impact center location do not significantly affect 

computation of ~v. the translational velocity change, for each 

vehicle. 

2. Small changes in impact center location do not significantly change 

the total energy loss of the collision. 

3. Small changes in impact center location significantly affect the 

resulting value of em and also affect the other coefficients but to a 

1 esser extent. 

4. Omission of the moment impulse can significantly affect the angular 

velocity changes. 

5 MAXIMUM FRICTION COEFFICIENT ANO ENERGY LOSS 

An analytical solution to the six equations in the Appendix is relatively 

easy to obtain6. The solved equations are long nnrl not easily manipulated 

however. It is convenient to discuss the concept of energy loss using the 

point-mass solution and to express the velocities in normal and tangential 

components. See Fig 1 for the n,t coordinate axes. Conservation of momentum in 

each coordinate direction gives* 

( l ) 

( 2) 

* Recall, capital V's represent final velocity components and small, or lower 
case, v's represent initial velocity components. 



The classical coefficient of restitution relates the normal relative velocities 

by 

V2n - Vin = - e (v2n - v1n) 

A fourth equation is obtained by expressing the tangential impulse as some 

proportion of the normal impulse; thus: 

. . . 
The quantity ll is referred to as an equivalent coefficient of friction since 

actual collisions seldom satisfy the conditions for Coloumb friction. Since 

impulse equals change in momentum, Eq 4 can be rewritten as: 

A convenient solution form of these equations is: 

V1n = Vln + m (l+e) (v2n 

V2n = V2n m (l+e) (v2n 

V1t = Vlt + pm (l+e) (v2n 

µm (l+e) (v2n 

vin)/m1 

Vln) /m2 

v1n)/m1 

vin) /m2 

. . . 

. . . 

. . . 

(3) 

(4) 

( 5) 

(6) 

(7) 

(8) 

(9) 

where~= m1m2/(m1+m2). If r = (v2t - v1n)/(v2n - v1n) the total kinetic energy 
loss due to the impact is 

TL = m(v2n - v1n)2 (l+e)[(l-e)+ 2µr - (l+e)µ2]/2 . . . (10) 

This expression has been obtained by many others for the special case of µ = O. 
Note that TL is quadratic in the variable µ; a maximum exists for ll = llm, where 

11m = r I ( 1 +e) (11) 

The corresponding maximum energy loss is 

(1?.) 

The condition µ = llm corresponds to the case when friction is just large enough 

to cause zero relative tangential velocity at separation. Any value ofµ > llm 

(with the use of Eq 4) causes an unrealistically large tangential impulse with a 
corresponding creation of energy. This accounts for the decrease in TL for 11 >µm 

and the maximum behavior. The same behavior exists for the six-equation, rigid 

body solution. 
When the NHTSA data was used to fit the rigid body model, earlier 

solutions5 produced a value of 11 higher than llm by a few percent. Consequently a 

constraint, µ ~ llm• was added and all eleven collisions were rerun. These are 



the results in Table 1. Although not illustrated directly in this Table, the 

least sq11are results sh01·1 thatµ is equal to JJm for~ eleven collisions. This 

means that for all of the experimental collisions, relative tangential motion 

ended before separation. One consequence of this is the ability to predict AV 

with a simple formula as shown in the next section. 

Fi Li V PREO I CTI ON 

For all experimental collisions analyzed it was noted that a certain 

combination of momentum and energy, rlenoted hy Li, remained nearly constant5, 

where 

(13) 

Here Li Vi is the magnitude of the vector velocity change of vehicle with mass m;; 

liT is the fraction of the total energy loss in the collision and the quantity in 

the brackets is the magnitude of the total initial momentum. A regression 

analysis showed the constants Li and B to be approximately 2/3 and -1/2, 

respectively, providing the empirical relationship 

(14) 

There appears to he some justification for this relationship based upon 

two properties of the experimental collisions. Recall an earlier remark that 

from all of the least square results, the coefficient µwas equal to JJm, its 

maximum value. Consider Eq 13 (with B = -1/2) for a point mass collision and 

for liT = (liT)rn; it is 
[ 2 ( )2 - 2 - 2 L~ = r + l+e ](m1mv 1 + m2mv 2 ) 

1 [ 2 + (1 2)]( 2 2 2 2) r -e m1v1 + m2v2 

(15) 

where r = (v2t - v1t)/(v2n - v1n) and m = m1rn2/(m1+m2). Table 1 shows that with 
only 3 exceptions, the coefficient of restitution is equal to or less than 0.1. 

With the assumption that e - 0, Li can be written as 

2 1/2 
L. = [ a(a 2 R J l 

1 (l+a)(a-+ R ) . 
(16) 



where a= m1/m2 and R = v2/v1. Fig 3 shows Li plotted versus the initial speed 

ratio, R , with the mass ratio a as a parameter. Note, for all collisions of 

vehicles with the same mass, Li = 0.707. neviations from this value for common 

vehicle mass ratios are relatively small. lJnder any circumstance0 , Eq 16 can be 

used with Eq 14 to predict the AV for any collision based upon the initial 

conditions and the energy loss. If the energy loss is unknown, and the collision 

geometry is similar to the experimental ones, the AT's from Table 1 can be used as 

estimates. Fig 3 shows a comparison plot of AV; for all of the experimental 

collisions. Actually, 3 sets of AV; 's exist, the experimental values, the least 

square calculated values and predicted values. The predicted values plotted use 

Eq 14 with Li = 2/3. 

An equation simpler than Eq 14 can be obtained from the point mass 

solution. Eq 6 through 9 with µ = µm give 

- 2 2 1/2 
AV i = *. [ ( 1 + e ) + r J ( v 2n - v 1 n ) 

l 

( 17) 

Though Eq 17 is simpler than Eq 14 and 16, its values for AVi are not as 

accurate. A reason is that µm used in Eq 17 corresponds to the point mass 

solution and it can vary considerably from the rigid body value of µm• As an 

example, consider Collison 1. The point mass value of µm = r/(l+e) = 1.73, 

whereas µm = 0.966 from the least square rigid body solution. Furthermore, the 

value of AT used in Eq 14 is the experimental value. 
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APPENDIX - EQUATIONS OF IMPULSE/MOMENTUM MODEL 

Conservation of momentum along the x axis: 1n2(V2x-v2x) + m1(V1x-v1x) = 0 

Conservation of momentum along they axis: m2(V2y-v2y) + m1(V1y-v1y) = 0 

Conservation of angular momentum: I2(Q2-w2) + I1(a1-w1) + m2(da+dc)(V2x-v2x) 

+ m1(db+dd)(v1y-v1y) = 0 

Restitution normal to the crush line at angle r: (V1y-dda1-V2y-dba2) sin r 

+ (V1x+dca1-V2x+daa2) cos r = -e[(v1y-ddw1-v2y-dbw2) sin r 

+ (v1x+dcw1-v2x+daw2) cos r 
Friction along the crush line at angle r: mi(V1y-v1y)(cos r - µ sin r) 

Moment restitution at impact surface: 

+ m?(V2x-v2x)(sin r + µ cos r) = O 

(a2-Q1)(l-ern) = em[(a1-w1)-m1dc(V1x-v1x)/I1 

In the above: 

NOTATION 

da = dz sin (02+¢2) 

de = di sin (01 ¢1) 

+ m1dd(V1y-v1y)/I1 -(Q2-w2)-m2da(V2x-v2x)/I2 

+ m2db (V2y-v2y)/I2l 

db = d2 cos (02+¢2) 

dd = d1 cos (81+¢1) 

e coefficient of restitution µ equivalent coefficient of friction 

along the impact surface em moment coefficient of restitution 

d distance between mass center 

and impact center 

I vehicle yaw inertia about its 

mass center 

m mass of vehicle 

T kinetic energy 

V,v velocity 

0 

r 

heading angle of vehicles relative 

to the x axis 

angle of impact surface relative to 

the y axis 

Q,w angular velocity 

¢ angle between the length axis of a 

vehicle and a line between its 

center of gravity and the center of 

impact 
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Fig 2 Experimental Collision Configurations 
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