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SYNOPSIS

Principles of Impulse and Momentum frequently are used to study vehicle
collisions. 1In some applications, angular rotations are neglected completely; in
others, rotational velocity changes are treated approximately. In this paper, a
moment over the crush surface is related to the angular velocity changes and its
significance is evaluated with data from experimental collisions. Another
feature of Impulse and Momentum models is the treatment of friction. It is shown
that a maximum exists for the friction coefficient along with a corresponding
maximum kinetic energy loss. This is discussed in general as well as how it
leads to a simple equation for velocity change prediction.

1 INTRODUCTION

Many technical papers have appeared which discuss the use of the theory of
impulse and momentum for analyzing vehicle collisions. 0One of the earliest, hy
Emoril in 1968, laid out some of the fundamentals on which later studies could
build. Grime and Jonesz, published the most thorough work of its time. Not only
were equations developed for vehicle velocity changes, but occupant motion was
also treated. Experimental results were provided for vehicle properties,
collision energy losses for certain types of collisions and typically encountered
parameters such as coefficients of friction and restitution. In 1977, Brach3
presented a complete set of equations for the planar impact of two vehicles.
Basically theoretical, this work yielded six linear algebraic equations which
relate the six initial velocity components (three for each vehicle), six final
velocity components, vehicle inertial and geometrical properties and the

collision geometry. A unique feature of this paper was the recognition that the
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impulse of a moment must be included over the common area of contact. This led
to the definition of a moment coefficient of restitution, e,. No experimental
evidence and only a few values were furnished for this coefficient at that time,

During the mid and late 1970's, a group of experimental collisions was
conducted for the U.S. National Highway Traffic Safety Administration?. These
were a rather comprehensive set of two-vehicle collisions with various
configurations, initial speeds and vehicles. These collisions were not only well
conducted and well documented but are the first set of collisions which recorded
angular velocity changes. In 1983, a paper was pub]ishedS which used the method
of least squares to fit the data from the NHTSA collisions to the planar
collision model of Brach, This fitting procedure furnished values of the
classical restitution coefficient, e, an equivalent friction coefficient, n , and
the moment coefficient en. Unfortunately, a sign error crept into the moment
equation3,5 which caused small errors in the coefficient values. The proper
results are included in this paper.

Some seemingly strange solutions of the six-equation planar model occur
when the equivalent coefficient of friction is varied. Careful examination of
this behavior led to some interesting theoretical results of the mechanics of

rigid body impacts6. Specifically, it was found that a maximum friction -

coefficient and a corresponding maximum energy loss exist for any given

collision. In the work to follow, the concepts of moment impulse, moment
coefficient, maximum friction coefficient and maximum energy loss are reviewed,
Based upon these concepts, new results are ohtained from fitting of the NHTSA
collisions to the six-equation planar model.

It was recognized5 that the velocity change magnitude, AV, of each vehicle
is predictable by means of an empirical formula. In this paper a theoretical
foundation is presented for this formula.

2 PLANAR RIGID BODY IMPACT MECHANICS

Newton's second law states simply that the resultant force on a particle
is equal to the product of mass and acceleration. Extensions to rigid body
motion and angular rotations are well known., When integrated over an arbitrary
time interval the laws relate impulse and change in momentum. The integrated
form of Newton's law is convenient for modelling impacts, provided some
assumptions are satisfied.

a. The resultant intervehicular impulse is much larger than the impulses

of other forces. Thus, during contact, forces such as friction with the

ground, drive train drag and aerodynamic drag are neglected.



b. The resultant impulse vector of the intervehicular force (a surface

force) acts at a single unique position called the center of impact.

The location of this point is assumed to he known.

c. Changes in the position of the mass center and changes in angular

orientation are small over the time interval of contact.

d. A hypothetical, fixed contact surface is presumed with the following

properties. Motion normal to this surface is due to deformation (crush).

Motion parallel to this surface has the nature of relative motion analgous

to frictional sliding.

e. The time duration of contact is small,

By itself, Newton's law expressed in impulse/momentum form does not possess any
restriction on time duration. Vehicular collisions typically have contact times
of 0.1 s to 0.2 s, Time intervals of this magnitude, coupled with the assumption
of large forces cause large accelerations, finite velocity changes and small
displacements. All of these taken together usually cause the above assumptions
to be satisfied for the study of vehicle collisions.

Fig 1 shows free body diagrams of two vehicles. The symbol P represents
the resultant vector impulse with components Py and Py expressed in the inertial
x-y frame. Because the intervehicular impact force acts over a surface, a moment
or couple exists. The impulse of the moment is represented hy M and is discussed
more thoroughly in the next section.

A classical approach to the planar, rigid body impact problem reveals
three unknown final velocity components for each rigid body for a total of six.
Thus Y1y, Viy, 91, Vox, V2y, and Qp are the six unknowns™ while the corresponding
initial velocity components, viy, Viy, wl, V2x, V2y and wp are presumed known. 3
proper solution can be obtained with six equations. Since a complete derivation
of the six equations of a planar impact has heen presented e1sehwere,3’5 along

with an analytical so]ution6, they are simply listed here in an Appendix.
3 STAGED COLLISIONS AND DATA ANALYSIS

A full set of data is available from 11 collisions® which can be grouped
into 4 collision catagories. These are illustrated in Fig 2 along with the
original collision numbers. Other information such as vehicle physical data,
initial speeds, etc., are contained in earlier works%,5.

* Final velocity components are capitalized throughout this paper; initial
velocity components are in lower case.



The procedure used to fit the experimenté1 data to the equations’ in the
Appendix is based upon the principle of least squares. It furnishes directly the
three coefficients, e, e,, and u and corresponding final velocity components.
These velocities differ from the experimental values but satisfy conservation of
momentum and the other impact equations. Table 1 contains some of the basic
results; various detailed aspects of the information contained in this Table are
discussed throughout this paper.

4 MOMENT IMPULSE AND MOMENT COEFFICIENT

One novel feature of the impact equations in the Appendix is the provision
for treating an impact moment impulse, M. Some authors claim that it is not
necessary to introduce this moment impulse into the problem as its presence
merely shifts the line of action of the impulse P. Actually, the absence of M
can shift the line of action of P away from the true center of impact. A moment
impulse can occur during a collision due to momentary or permanent interlocking
of parts. A moment impulse can also be created in a collision analysis by a
choice of impact center remote from its true Tlocation. The moment impulse cannot
be omitted indiscriminately. A proper question relates not to the existance of M
but rather its significance and its relationship to the moment coefficient.

The definition3 of the moment coefficient, ey, allows it to have the
values of +1 or -1 < e < 0. An alternative, e' = -ep can be definedb. In
either case, ey or e' has properties for rotational velocities which the
classical coefficient of restitution, e, has for translational velocities,
Specifically, e, = +1 requires that M = 0, e; = 0 represents a totally inelastic
angular impact (91 = Q2) and ep=-1 represents a totally elastic angular impact.
Both M and ey depend directly upon the analyst's choice of the location of the
impact center, i.e., the Tocation of the point of application of Py and Py on
each vehicle. These points are typically known with Tittle accuracy. Reference
to Fig 1 shows that the distances dp and dp and angles ¢ and ¢2 determine the
impact center. For the results in Table 1 dy, d2, ¢1, and ¢2 were chosen with
the aid of photographs and scaled deformation diagrams?. 1In order to assess the
effects of including a moment in the the impact equations, two sets of Jeast
square analyses were conducted. Table 1-A shows results for ey constrained
between -1 and 0 during the fitting procedure. Table 1-R shows the results for
eq = 1 (M=0). Generally speaking, the smaller the sum of squares, the better the
data fits the equations. For collisions 1, 8, 9 and 10, the condition of M = 0
yields a better fit, For all other equations, M # 0 provides a lower, minimum
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sum of squares. To provide more insight, Collision 6 was analyzed in more
detail. A few, unsystematic changes were made in dy, do, ¢1 and ¢p and the least
square fitting procedure repeated. Results are shown in Table 2. Rows 1 and 2
in Table 2 correspond to the conditions in Table 1 for Collision 6. Rows 3 and 4
are for different impact points.

Another aspect of angular velocities concerns rotational kinetic energy.
Note the initial angular velocity of all vehicles in all NHTSA collisions was
zero. Rotational energy was as high as 75% of final energy in one case and
values of 25% to 30% are typical. So from an energy point of view, rotational
velocities are not always negligible.

Based upon comparisons among Tables 1A, 1B, 2 and previous work not
reported here and from the point of view of least square fitting of experimental
data:

1. Small changes in impact center location do not significantly affect
computation of AV, the translational velocity change, for each
vehicle.,

2. Small changes in impact center location do not significantly change
the total energy loss of the collision.

3. Small changes in impact center location significantly affect the
resulting value of ey and also affect the other coefficients but to a
lesser extent.

4, Omission of the moment impulse can significantly affect the angular

velocity changes.

5 MAXIMUM FRICTION COEFFICIENT AND ENERGY LOSS

An analytical solution to the six equations in the Appendix is relatively
easy to obtainb, The solved equations are long and not easily manipulated
however, It is convenient to discuss the concept of energy loss using the
point-mass solution and to express the velocities in normal and tangential
components. See Fig 1 for the n,t coordinate axes. Conservation of momentum in

N . . . *
each coordinate direction gives

miVip + mVon = mvip + mpvop o . (1)

miVig + mpVpt = mivig + mavat .. (2)

* Recall, capital V's represent final velocity components and small, or lower
case, v's represent initial velocity components.



The classical coefficient of restitution relates the normal relative velocities
by
VZn - V]_n = - 2 (VZn - Vln) * + e (3)

A fourth equation is obtained by expressing the tangential impulse as some
proportion of the normal impulse; thus:

Py = uPp e (8)

The quantity u is referred to as an equivalent coefficient of friction since
actual collisions seldom satisfy the conditions for Coloumb friction. Since
impulse equals change in momentum, Eq 4 can be rewritten as:

miVit = umpVo, = miviy - umpvoy . .. (5)

A convenient solution form of these equations is:

Vip = vip + m (1+e) (v2n - vip)/m .. (6)
Von = von - m (1+e) (vpn - vip)/mp SR (7)
Vit = vig + um (1+e) (von - vip)/mp . e (8)
Vor = vor - um (1+e) (von - vip)/m2 o e (9)

where m = mymp/(my+mp). If r = (vor - vip)/(voy - vin) the total kinetic energy
loss due to the impact is

T = m(von - vin)2 (1+e)[(1-e)+ 2ur - (1l+e)n2l/2 .. (10)

This expression has been obtained by many others for the special case of p = 0,
Note that Ty is quadratic in the variable p; a maximum exists for pu = up, where

um = r/(1+e) ... (1)
The corresponding maximum energy loss is

(T = 2 (Vg = ¥3)° (1= ef e o)

.. (12)
The condition u = yy corresponds to the case when friction is just large enough
to cause zero relative tangential velocity at separation. Any value of u > up
(with the use of Eq 4) causes an unrealistically large tangential impulse with a
corresponding creation of energy. This accounts for the decrease in T for p >uy
and the maximum behavior, The same behavior exists for the six-equation, rigid
body solution.

When the NHTSA data was used to fit the rigid body model, earlier
solutions® produced a value of u higher than uy by a few percent. Consequently a

constraint, u < py, was added and all eleven collisions were rerun. These are



the results in Table 1. Although not illustrated directly in this Tahle, the

least square results show that p is equal to uy for all eleven collisions. This

means that for all of the experimental collisions, relative tangential motion
ended before separation. One consequence of this is the ahility to predict AV

with a simple formula as shown in the next section.
6 AV PREDICTION

For all experimental collisions analyzed it was noted that a certain
combination of momentum and energy, denoted by L;j, remained nearly constant9,
where

B
miAvi(AT)

i 2 > 1/2
Cmyvy )™+ (myv,) ]
Here AV§ is the magnitude of the vector velocity change of vehicle with mass mj;
AT is the fraction of the total energy loss in the collision and the quantity in
the brackets is the magnitude of the total initial momentum. A regression
analysis showed the constants Lj and g to be approximately 2/3 and -1/2,
respectively, providing the empirical relationship

1/2 1/2
oVi = LInv1)? ¢ (mv2)21 0 (aT) g Ce (1)

There appears to be some justification for this relationship based upon
two properties of the experimental collisions. Recall an earlier remark that
from all of the least square results, the coefficient p was equal to upy, its
maximum value. Consider Eq 13 (with g = -1/2) for a point mass collision and
for AT = (AT)g; it is

[r2+ (1+e)2](m vl + momv.2)

2 1771 272

Li == 7 2 7. 77 »ee (15)
[r° + (1~e')](m1v1 +myv,©)

where r = (vpr - vit)/{von - vin) and m = mmp/(my+mp), Table 1 shows that with
only 3 exceptions, the coefficient of restitution is equal to or less than 0.1,
With the assumption that e ~ 0, Lj can be written as

2) 1/2

R
]
R?)

L, = [—<ole

; (16)
(1+a)(a

+
2+



where a = my/mp and R = vp/vy. Fig 3 shows Lj plotted versus the initial speed
ratio, R , with the mass ratio a as a parameter, Note, for all collisions of
vehicles with the same mass, Lj = 0.707, Deviations from this value for common
vehicle mass ratios are relatively small. Under any circumstance®, Eq 16 can be
used with Eq 14 to predict the AV for any collision based upon the initial
conditions and the energy loss. If the energy loss is unknown, and the collision
geometry is similar to the experimental ones, the AT's from Table 1 can be used as
estimates. Fig 3 shows a comparison plot of AV; for all of the experimental
collisions. Actually, 3 sets of aVi's exist, the experimental values, the least
square calculated values and predicted values. The predicted values plotted use
tg 14 with Ly = 2/3.

An equation simpler than Eq 14 can be obtained from the point mass
solution. Eq 6 through 9 with p = yuy give

1/2

(1) f21 (vy - vy) ce.oan
1

Sz

AVi =

Though Eq 17 is simpler than Eq 14 and 16, its values for AVj are not as
accurate, A reason is that uyp used in Eq 17 corresponds to the point mass
solution and it can vary considerably from the rigid body value of yy. As an
example, consider Collison 1. The point mass value of uy = r/(l+e) = 1.73,
whereas py = 0.966 from the least square rigid body solution. Furthermore, the
value of AT used in Eq 14 is the experimental value.
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APPENDIX - EQUATIONS OF IMPULSE/MOMENTUM MODEL

Conservation of momentum along the x axis:

Conservation of momentum along the y axis:

Conservation of angular momentum:

Restitution normal to the crush line at angle

i (Voy-vox) + mp(Vix-vix)
m2 (Voy=-vay) + my(Viy-viy)
Io(2-wp) + 11(Q1~-w1) + mp(datde)(Vox-vay)

0
0

it

i

+ ml(db+dd)(v1y—v1y) =0

+ (VixtdcQp-Voy+dafp) cos T =

+ (vig+dewy-voyxt+dawp) cos T

Friction along the crush line at angle T:

r+ (V1y-dge1-Voy=-dpe2) sin T

e[ (v1y-ddqwl-vay~-dpwp) sin T

mp(Viy=viy)(cos I' - u sin T)
+ mo(Voy-voy)(sin I + p cos T) =0

Moment restitution at impact surface: (Q2-Q1)(l-eq) = epl(Q1-w1)-midec(Vix-vix)/11
+ mpdg(Viy-viy) /11 =(22-w2)-mpda(Vox-vox)/12
+ madp (ng—V2y)/12]

In the above: dj

do sin (0o+¢p) dp =

de = dy sin (01 ¢1)
NOTATION
e coefficient of restitution 1
ey moment coefficient of restitution
d distance between mass center o]
and impact center
I  vehicle yaw inertia about its r
mass center
m  mass of vehicle Q,0
T  kinetic energy 3
V,v velocity

do cos {09+s7)
dq = di cos (91+47)

equivalent coefficient of friction
along the impact surface

heading angle of vehicles relative
to the x axis

angle of impact surface relative to
the y axis

angular velocity

angle hetween the length axis of a
vehicle and a line between its
center of gravity and the center of

impact



Fig 1 Free Body Diagrams
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