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Abstract—The equations of motion of a rigid body expressed in terms of impulse and momentum are
linear. When applied to rigid body collisions, it is known that the equations of motion are insufficient
to provide a solution of the classical impact problem; an additional equation is needed for each
unknown impulse component. Using a set of coefficients, a problem formulation is presented that
extends Newton’s approach for collinear impacts of particles to three-dimensional impact problems.
Being linear and algebraic these equations can be solved, providing a set of solution equations in terms
of the physical system parameters, initial conditions and the coefficients. A unique feature of these
equations is that they are independent of the contact process(es) and apply to all collisions meeting the
rigid body assumptions, whether energy is or is not conserved (contact processes may involve the
release of stored energy). Certain solution behavior, including the energy change can be found by
treating the coefficients as parameters. By imposing work-energy and/or kinematic constraints,
coefficients can be bounded to insure realistic solutions. Coefficients are defined for couple-impulses so
the approach is not limited to point contact.

Examples are given of the collision of a sphere against a massive barrier (surface). In one, the
sphere has an initial cross spin (about its roll-spin axis) and the tangential process is Coulomb friction.
Another, including experimental data, is for microspheres (= 1-100 wm diameter), where the dynamic
contact processes are not fully understood. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Methods used for modeling mechanical impacts range widely in complexity and objectives.
Stresses in the contact region are often required for design purposes. In other cases velocity
changes and energy losses are sought. The latter is of interest here. Even with such restricted
objectives different approaches are possible. The simplest by far is with the use of rigid body
impact theory because it can result in a purely algebraic approach. The justification for
extending an algebraic theory to three dimensions is the model’s remarkable generality: the
impact dynamics problem can be formulated and solved without specifying the contact process.
Newton’s approach to the central impact of particles (for moderate to low speed applications)
uses the concept of a coefficient of restitution, impulses and linear and angular momentum to
calculate velocity changes and determine kinetic energy loss. Not all problem formulations are
algebraic. For Coulomb friction, Keller [1] has developed an approach that uses integration of
the contact impulse variables. Stronge [2] has shown how Keller’s approach can be used over a
flat surface using an energetic coefficient of restitution. Maw et al. [3] developed a model that
treats tangential restitution. Approaches such as these have been developed individually for
specific types of interface mechanics, such as dry friction, tangential restitution, and so on. A
comprehensive review of the above and other approaches to impact modeling has been
prepared by Mac Sithigh [4]. Depending on the contact process and the approach, solution of
the model equations can involve mathematical methods ranging from linear algebraic to
nonlinear differential equations. An objective here is to present a broad formulation of the
impact problem useful for a variety of engineering applications. The approach is not limited to
planar or even small contact interfaces. The contact interface between the two colliding bodies
may generate forces which can be simulated by a kinematic constraint such as a rapid clamping
action or magnetic attachment. Although not pursued directly in this paper, cases can occur
where an interface mechanism can release energy such as a spring-loaded device. The
formulation using generalized coefficients is intended to apply to all types of contact processes.
This is not a first introduction of this approach but rather a more detailed discussion that
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includes some subtle attributes, particularly the stationary property of energy loss. In fact, the
method has already been extended to collisions of pseudo-rigid bodies by Cohen and Mac
Sithigh [5]. Some examples are also included to illustrate the method, one in particular contains
experimental data and shows how the solution equations can serve as a generic impact model
for examining experimental data from collisions.

In the context of impact it is known that Newton’s second law (in the form of impulse and
momentum and using only initial and final values of all variables) provides an insufficient
number of equations for a solution of a problem. The approach here is to derive additional
equations, each based on the definition of a coefficient, sufficient in number to supplement
Newton’s laws and provide equations equal in number to the unknowns. The number of
coefficients is equal to the number of (unknown) impulse components at the interface. In some
applications, see Brach [6], external impulses may need to be evaluated in an iterative fashion
using kinematic constraints. The complete set of equations, called the system equations, is linear
in the unknowns and is independent of the contact interface mechanics. The solutions of the
system equations are referred to as the solution equations. Values, ranges of values, or bounds
on the coefficients and corresponding solution can then be determined, based on the physical
nature of the contact process and work—energy principals. As Newton’s kinematic coefficient for
central impacts (and Stronge’s energetic coefficient) are not material constants, the coefficients
defined here also must be evaluated experimentally or analytically related to the contact
process(es). Specific solutions for given processes and initial conditions in some cases may
require integration or piecewise evaluation of variables to determine certain coefficients defined
in the formulation of the problem.

Some features of the formulation require discussion. The first concerns reaching a full
solution of the rigid body impact problem by evaluating the solution equations for given initial
conditions and specific coefficient values. As a general formulation (independent of particular
contact processes), the coefficients are independent constants whose values determine a
solution of the system equations. For some applications the coefficients may be determined
directly such as from known constraints, experimental data or from an independent analytical
procedure such as a dynamic finite element analysis. For example, Jiger [7] determines the
coefficient of tangential restitution for Hertzian elastic contact. In cases such as these,
substitution of the coefficients into the system equations provides a solution. For specific contact
processes, the coefficients can lose their independence and their evaluation may be complicated.
Whatever way coefficients are found, their use in the system equations provides a solution to
the impact problem that satisfies Newton’s laws. .

It is often thought that only small deformations contained or restricted to infinitesimal
contact regions can be treated by rigid body impact theory. An inference follows that since the
contact region is infinitesimally small, significant contact moments (couples) cannot develop and
thus should not be included in rigid body impact theory. In fact, rigid body theory can apply to
problems with other than point contact. Figure 1 shows examples of a soft sphere and a hard
annulus, each colliding against a relatively rigid flat surface. When the sphere has initial spin, w,,
a moment coefficient associated with M, can be defined and used (the moment coefficient is
likely to be related to Newton’s coefficient e, and illustrates potential dependence discussed
earlier). Both coefficients can depend on the initial conditions.t The separation of rigid body
impact dynamics and the process of coefficient evaluation is always possible as long as the
assumption of short duration contact is met.

Examples of where the algebraic simplicity of this approach can provide a distinct advantage
includes:

TSome may say that coefficients that depend on initial conditions (and are not material constants) have
little utility. This view does not recognize that when applied to nonlinear contact processes (as most
impact problems are), the dependence on initial conditions is actually necessary in order to provide a
useful model.
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Fig. 1. Sketches representing a soft sphere and a hard annulus colliding with another object,
collisions that can be modeled using rigid body impact theory.

1. fitting of experimental collision data, particularly when the contact processes are obscure
or unknown;

2. design of a mechanical system whose overall motion includes collisions including

optimal design problems where the coefficient values can be optimized in parametric

space;

Monte Carlo simulation of impact processes;

analysis of vibratory impact processes including unstable and chaotic motions;

collisions where the process is inherently complex (such as collisions of vehicles);

when an impact is a part of a broader physical problem and model simplicity is

necessary.

N kAW

However, it must be realized that the rigid body approach to impact itself has limitations. These
can be significant. As seen by Stoianovici and Hurmuzlu [8] for a long slender rod whose end
strikes a hard surface, changing the angle of incidence of the rod excites modes of vibration
differently and results in a significant change in the coefficient of restitution, owing simply to
changes in the system configuration.

2. SYSTEM EQUATIONS

The approach in this paper consists of deriving a set of equations from basic principles of
mechanics augmented by equations that define coefficients. The resulting equations, called
system equations, are linear in the unknown velocity and impulse components. A set of solution
equations is found. It must be recognized that the solution equations do not directly provide
solutions for specific contact processes (such as Coulomb friction or viscous friction) until the
coefficients are related to these processes. However, with only defining some, or none, of the
contact processes work—energy concepts and/or kinematic constraints can be applied directly to
provide bounds on the values of the coefficients. What this formulation does is postpone the
process of relating the coefficients to the contact processes. In some applications this presents
no advantage; in general, it does. Experimentally determined coefficients, of course, are an
example of the latter. This approach is now covered for the three-dimensional impact of two
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Fig. 2. Diagram of the two body impact problem showing dimensions and coordinates.

rigid bodies with masses m,; and m, as sketched in Fig. 2. A single tangential plane containing a
common contact point C is chosen. A normal to this plane is chosen through the point C. In
some applications the choice of C may not be unique and can may require estimation or
iteration. If the mass centers of the two bodies lie on this axis throughout the collision, it is
called a central collision. By choosing two perpendicular directions within the tangent plane, a
triad with coordinates n, ¢ and ¢’ is formed.

2.1 Equations of impulse and momentum.

For a contact duration over a time interval 7, to 7,, where 7 is time, the change in linear
momentum of masses #n1;, i=1,2, is

ml-V,»— m,-vi=( ey 1)i_1P,i:1,2 (1)

Capital symbols represent variables at the end of contact, 7,, and variables in lower case
symbols represent values at the initiation of contact, ;. Vector quantities are indicated by bold
characters. The velocities in equation (1) are of the mass center, V; with components (V,, V.,
Vi) and V, with components (V,,, V5, V). The total impulse is P has components (P,, P,, P,).
The relationships between angular momentum and the moments of the impulses is

Hi‘hi:(_l)i"1M+dix(—1)#11)71':192 2)

where the angular momentum components of H; and h; involve the bodies’ inertia tensors. The
vector M represents the impulses of any moments (couples) acting over the contact region and
d; is the vector from each mass center to point C. Equations (1) and (2) form four linear vector
equations, 12 scalar equations, containing a total of 18 unknowns. Six more equations are
needed to complete the system equations, one each for the components of P and M.

2.2 Coefficients

The most well-known coefficient used in impact analysis is the kinematic coefficient of
restitution (usually indicated by the symbol e) for central collisions and attributed to Newton. It
is the negative ratio of the rebound to approach speeds normal to a tangent plane. It is a
kinematic quantity but with a well-known relationship to energy loss; energy principles require
that 0 =e=1. The use of coefficients in the three-dimensional problem is not quite as simple
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and has been discussed by Stronge [9] and Brach [10]. In a more general fashion, it is possible to
define a triplet of kinematic coefficients of restitution e,, ¢, and e, (corresponding to the three
coordinate directions) in a vector AV, with a jth component V,;+ec,;, j =n,t,t" such that

AVe, =0 (3)
where Vo, is the final relative contact velocity and v, is the initial relative contact velocity. It is
important to recognize that the coefficients in equation (3) are simply kinematic constants
governing the ratio of final-to-initial velocity components. Their relationship to energy loss is
discussed later. Three system equations remain to be developed, related to the moment impulse
components. A vector Q is defined with a jth component, Q;=e,,;M;+ (1 + €)1 (S — Qy;) such
that

Q=0 (4)

where the coefficients e,,;, j=n,t,t', are kinematic constants related to relative rotational motion
and the Qs are the final angular velocity components of body i about axis j. The scalar quantity
I, is an inertial constant equal to the product divided by the sum of the principal moments of
inertia about the j axis of each body, respectively. Examination of each component shows that if
an e,,; =0, the final relative angular velocity about the j axis must be zero. Similarly, if e,,;=— 1,
then the corresponding moment impulse M, must be zero.t Frequently an impact problem is
solved for conditions of point contact where moments or couples cannot develop. This
corresponds to the conditions that e,,,=—1, j=nt and ¢. In any case the three moment
coefficients are constants carried through to the solution equations. When the problem does not
directly involve rotational kinematic constraints (that is, the e,,s are not known directly),
experimental information or the physical process of couple generation and the energy loss in
the collision must be used to determine appropriate values of the coefficients for a solution. This
topic admittedly needs additional study with only a simple example is presented here
corresponding to rolling friction or drag.

The above equations (1)—(4), are linear and contain 18 unknowns, consisting of 12 final
velocity components and 6 force and moment impulse components. Analogous to the classical
Newtonian coefficient, e, each of the coefficients ¢; and e, defined above has the ability to
provide a measure of ‘“restitution” associated with velocity components along the jth
coordinate. For example, tangential restitution in planar collisions has been observed and
measured by Maw, Fawcett and Barber, [3], its effect modeled by Brach [12] and applied to
simulation of granular flow by Moreau [13]. If the scope of the problem is reduced to the point
contact case by considering only when the couples M; are absent, the number of unknowns
reduces to 15 and equation (4) is no longer needed.

For some problems it is convenient to introduce kinetic coefficients, u, and p,, in place of e,
and e,. An equivalence between the coefficients exists (discussed later) and convenient
combinations of the types of coefficients can be used. equation (3) is replaced to introduce the
such a combination of coefficients. The first component of equation (3) is retained, that is

Ve = = elern )

The ratio of the final tangential impulse components, P, and P, to the final normal impulse
component provides kinetic coefficients u, and u,, such that

P,=pu,P, (6)

P, = p, P, (7

Without specifying a priori any specific tangential physical processes, i, and u, are constants

(kinetic coefficients) corresponding to the values of the ratios of the final impulse components.
Equations (5)—(7) are alternatives to and replace equation (3). As a result of the introduction of

+Some of these definitions are arbitrary and have been chosen to facilitate application of rotational
kinematic constraints on the solution equations. Other definitions are possible and may possess other
desirable features.
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the alternative coefficients (e,, u;, p¢), tWo sets of system equations and solution equations now
exist. These two solution sets for the same set of initial velocities and interface properties must
obviously bear a relationship. In fact, equating the solutions for each of the tangential velocity
components V}, j=tt', provides equivalency relationships between the coefficients ¢,, u,, e, and
e This equivalence has been explored for collinear impacts by Brach [12]. There may be
instances where kinetic coefficients associated with the moment impulses, M,,, M, and M,, may
be more convenient than the kinematic coefficients in equation (4). An example is in Brach [12].

To summarize, a set of 18 linear system equations has been derived for the full three-
dimensional or 15 variables in the point contact impact problem (M, = M,= M, =0). Solution of
such a set of equations (but with specific coefficients) has been outlined by Cohen and Mac
Sithigh [4] and others. Solution equations provide a solution for a given set of initial velocities
once the coefficients are known. The solution provides all final velocity components and all
impulse components. This means that V(v,,, wy, €,, i,), Qi(vy, v, e,, p,) and P(vy, oy, €4, )
are known, i=1,2 and j=n,t".

3. KINETIC ENERGY LOSS

One of the advantages of the above approach is that once the system equations are solved,
any aspect of system behavior including the kinetic energy loss can be expressed in terms of the
initial conditions and the coefficients. It also permits work—energy constraints to be applied.
This permits an exploration of how the coefficients control energy loss, that is, how impulse
components do work and dissipate energy. This exploration is convenient and sometimes
necessary to provide values or bounds on the coefficients. In some problems, the work of
individual impulse components is important and must be examined separately. An important
example is when determining the work of the normal impulse during approach and rebound for
use with Stronge’s [9] normal energetic coefficient. At this point the energy loss expression for
the point contact problem is examined to illustrate a useful feature of the impulse ratios.

When couple impulses are absent, the final velocity components at point C can be expressed
in terms of the final mass center velocities and the final angular velocities. equation (2) can then
be used to eliminate the angular velocities leaving the contact velocity components expressed in
terms of the impulse components. This provides the following matrix equation

Ve, —ve, =[a]P (8)

where the matrix [a] depends upon inertial properties and the distances from the mass centers
to point C. Using equation (8) the vector impulse can be written in the form
P =[a] "(V¢,—ve,) ©)
Using equation (5), the first component of the contact velocity change can be written as
Vem = Vem=—(1+€)ve,,. A limiting case is now defined where simultaneously, there is no
normal rebound (e,=0) and relative tangential motion ceases at or prior to the end of contact;
this corresponds to (e,, i, tr)=(0, pw, ro). These limiting or critical impulse ratios can always
be found from the solution equations and by setting the final relative tangential velocities to
zero, solving for the corresponding impulse components, P,,, P, and P,, and computing their
ratios. Using these, the kinetic energy loss, 7}, of the impact can be written as

Ty = =3P, (Pl pe ) [al(l e} = 2Puofl pop al{l popsrro) ) (10)

The superscript T indicates the transpose of the vectors in braces. Recall that from the
solution equations P, is a function of initial velocities and the coefficients. For some special
cases (including point mass, central rigid body impacts and some constrained problems) P, is
independent of the impulse ratios. In those cases, the quadratic form in the impulse ratio
coefficients of the first term of equation (10) and the linear form of the second term shows that
the kinetic energy loss is stationary for (e,, u, p,)=(€,, L0, pwo); the peak energy loss occurs
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for (e,, pr pr) = (0, Ly, o). This was noted by Brach [12]. For certain applications such as dry
friction the kinetic coefficients are not independent; rather u,=usiny and u,=cosn. The
coefficient u is the resultant impulse ratio, n is the angle made in the tangent plane by the
resultant final tangential impulse and u? = u? + u7.

The same concepts just discussed apply to the full three-dimensional problem including the
form of the expression for the kinetic energy loss. Finding an equation corresponding to (10)
requires two additional steps. First, energy loss in the presence of the moment, or couple,
impulses must be written. Then the moment impulses M,, M, and M, must be expressed in
terms of the final velocities by using equations (2) and (4). These are not presented.

For dry friction, Stronge [9] has shown that the kinematic and kinetic coefficients introduced
and used above are not independent. In place of e,, Stronge introduces a energetic coefficient,
E?, which is defined as the negative ratio of the work done by P, during rebound to the work
done by P, during approach. The energetic coefficient and the friction coefficient, f, form an
independent pair of parameters for impact. Consequently, for dry friction e;=e¢(E.f),
€= en(E,f) and u;= pu(E.f). This is inherent in the approach presented here and is a result of
the trade off made at the beginning whereby treating process nonlinearities are deferred until
after the solution equations and kinetic energy loss expressions are available. These functional
relationships between coefficients can sometimes be found analytically, a topic dealt with in the
examples. It is seen that since impact coefficients such as Stronge’s energetic coefficient depend
on the initial conditions (i.e. it is not a material constant) and the impulse ratios (and tangential
coefficients) have limiting values that depend on the initial conditions, that the generalized
coefficients depend on initial conditions. This is discussed further in the following.

Finally, it should be noted that for the solution of some problems it is convenient and
sometimes necessary to define partial impulse ratios, such as by Brach [12]. These are ratios of
the tangential impulse components to the normal impulse component over specific portions of
the contact duration such as approach, rebound and other events such as when sliding stops or
reverses.

4. EXAMPLES

Two examples are summarized to illustrate various features of the approach discussed above.
The first is a point contact problem of a sphere hitting a flat rigid barrier with initial spin about
the projection in the tangential plane of its initial velocity vector. A solution of this problem
using a different approach is presented by Stronge [2]. The second is a full three-dimensional
problem reduced to planar conditions where a sphere collides with a massive barrier with a
couple permitted at the contact area. Experimental data for this type of problem is introduced
to illustrate the application.

4.1 Point contact of a sphere against a flat rigid barrier

In this problem, illustrated with the free body diagram in Fig. 3, the moment impulses M,,, M,
and M, at C are all zero. The system equations derived above apply by dropping all equations
with subscript 2, which reduces the number from 18 to 12. With zero moment impulses,
;== 1, j=ntr, equation (4) becomes trivial and the number is reduced to 9. With M, =0, no
change in w, can occur and Q, = w,, leaving 8 unknowns and 8 system equations. The solution
equations give the final velocities

V,=— e, (11)

Vi=v,— (pd po) Arven [ = ol (12)
Ve=vp = (el o) Avees [ = ool (13)
Q= o, ~ (o] pro) Y || = el (14)

Qt' = Wy (/’Lt/ﬂto)yr’an I/“Lll = ‘/‘Ltoi (15)
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t

Fig. 3. Dimensions and coordinates of a sphere colliding with a flat rigid surface.

where for a sphere A;=2/7, y;=5/Ta and pjo=2vci/Tv,(1+e,), j=tt". The energy loss expression
is

Ty =3m(l = epyvy +5mA, (pd pio) (2 = pd pio)ve, + 3mAL ol woON2 = pol pop )0,
|t = |pool and [, [ = [l (16)
Corresponding to equation (10), P, has been eliminated and it can be seen that the energy
loss is a maximum at (e,, i, pr)=(€,, Mo, Mro). If the contact surface is flat and tangentially
isotropic and the process is dry friction, Stronge [2] shows that the direction of slip is a constant.
Then p,=pucosy and pu, = using and u®=pu?+ul. The angle 7 is the arctangent of u,/u, The
energy loss is
To=5m(1 = e, + 3mQ2T) (! po)(2 = p/ po)(We, + v, ), || = ol (17)
where wo=2(vg, +vey)'?/Tv,(1 +e,). This now is a central impact so 0=<e,=1. For a solution
for a specific value of friction coefficient, f; the impulse ratio u is set equal to f (with the sign of
o) as long as f=|u|, otherwise u = u,. Note that when e, =0 and u = u,, the sphere does not
rebound and its final motion is that of rolling on the surface. Without the moment impulses it is
not possible for the sphere to lose all of its kinetic energy even though relative velocity at the
contact point ceases.

4.2 Planar impact of a sphere with a barrier with a adhering surface

In this problem the surface has an adhesive capability and can fully seize the sphere. To make
this possible, it is assumed that adhesion acts over a finite contact area and can retard rolling of
the spheref as well as its rebound. The coefficient e, represents the combined effects of
dissipation due to deformation as well as adhesion normal to the surface. The free body diagram
in Fig. 3 applies. For this example initial conditions are such that no motion or forces are
generated along the ¢’ coordinate and no moment about the normal axis exists. That is,
w,=w,=Ve, =V, =0 and w, = w. The solution equations are

V.= — e, (18)
Vi=v,— (#/ po) A, + e, aw) (19)
Q. = —e,w— e, (u wy)ai(v, + e aw)lk’ (20)

TRolling resistance is typically ignored during impact but its introduction is not entirely new. See Sinitsyn
[11] for a different approach.
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P,=—-m(l+e,)v, (21)
P,= pP, (22)
M, = — (1+e,, ) (mk*w — aP)) (23)

where k?=2a%/5, o= A(v,+ e, paw) and A = (1 — e,,,a*/k*) ', The energy loss is

1 1 1
Tu(en poeme) = - m(l = e, + — k(1 - Cmer) + = mA(l po)(v: + eaw)[2(v, = e,aw)

- (M//'LO)/\(UI + emr’aa))(1 + azemt'z/kz)] (24)
An interesting and common special case of energy loss is when a moment impulse cannot
develop, that is, when e,,,, = — 1. This has an energy loss expression
1 1
TL(en’lLl” - 1) = —Z_m(l - ei)vi + 5mA(lu’/lu’0)(vf_ aw)[z - (M/ﬂo)] (25)

which is the planar version of equation (16), in the previous example. Another special case, one
of particular interest is when the sphere completely sticks to the surface. In this case

1 1 1
7100, 0,0) = > mv? + 5 mv? + > mk’w? (26)

found from the condition (e,, i, €,.)=(0, wo, 0) and represents an impact where the sphere
fully adheres to the surface and loses all of its initial kinetic energy. This is an example of the
children’s game where a soft, fabric ball is thrown against a target covered with Velcro. The ball
fully attaches to the target at the location of impact. The inclusion of a moment impulse and its
corresponding coefficient is necessary to model this process; point contact theory alone is
insufficient.

Another aspect of the problem is to examine the case where the final conditions are such that
the sphere does not rebound (V,=0), is rolling (u =p,) but still has a small amount of
(rotational) kinetic energy at time 7,. The energy loss in this case is found from equation (24)
with (e, i, €,.0)=(0, ro, €,,»). Consider the energy loss normalized to the initial kinetic energy,
T, which is 1 minus the fraction of remaining energy. That is, 77 =1 — T'x. For these conditions

o (v, + Kwla)(1 + k*/a®)

TR =
R (K*la® — e,)? (V2 + v + K o?)

27)

The quantity 7 must be bounded below by zero and above by the fraction of the remaining
kinetic energy under the condition of no moment impulse. This can be obtained from equation
(24) as T1(0, o, —1). Consequently

(v, + KPawla®)(1 + k*la?)
O = ;S 27,2\2¢..2 2 2. 2 (28)
(1 +k*la*) (v, + vi + k*w?)

This serves as a bound on the moment coefficient, e, . Figure 4 illustrates the functional
dependence of T on e, from equation (27). Since e, = — 1 (with e,=0 and u = u,) represents
the final condition of unrestrained rolling and e, =0 represents full sticking, the condition
—1=<e,, =0 represents rolling after a rotationally dissipative impact. Positive values of e,,,
represent a rotational elastic contact phenomenon, something not associated solely with
“sticking” and not applicable to this example.

As a final part of this example, experimental data is presented to illustrate the impulse ratio
coefficient, its limiting values and how is used to represent a tangential process. The dynamic
contact mechanics associated with collisions of very small particles, in the range 1-100 um as
studied by Dunn er al. [14] is not fully understood. Force systems that act normal to the contact
surfaces such as van der Waals adhesion, capillary and electrostatic forces become significant
relative to elastic body forces and weight. These adhesive forces can inhibit rebound and even
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Fig. 4. Functional dependence of the remaining energy, 7%, on the moment coefficient (equation
(27)) of a rolling sphere with no rebound.

cause attachment to occur. In some cases this is desirable (such as filtration and the use of toner
powders in xerography) in others it is not (contamination of microchips during manufacturing).
Not only are dynamic normal forces not well understood but it is not even known if the
Coulomb friction model is appropriate. It is seen that the impulse ratio found in the above
equations has a critical value, dependent on the initial conditions. For this application—if
Coulomb friction is applicable—the impulse ratio behaves as illustrated by the solid curve
segments in Fig. 5. The constant dynamic friction coefficient is f and u = f as long as the angle of
incidence is low enough so that sliding continues throughout the duration of contact. Figure 5
also shows corresponding data averaged over numerous oblique impacts of microspheres
against a molecularly smooth flat surface for each of several angles of incidence. The total initial
velocity was held constant as the angle of incidence was varied; 90° is normal incidence. The
coefficient of normal restitution and the value of the coefficient of friction for the solid curves
are chosen to agree with the data and are e,=0.79 and f=0.14. The experimental data show
reasonably good agreement with the Coulomb friction model except at the lowest experimental
approach angle where the impulse ratio value is low. (Analysis of the data shows that the
difference of the experimental point from f=0.14 is statistically significant.) This point also
corresponds to the lowest initial normal velocity, which is where the adhesion forces have the
greatest significance. All of this implies that interaction between the tangential and adhesion
forces may exist and indicates that Coulomb’s friction model applies in the presence of adhesion
but some other effect is present at very low normal velocities.

Three data points appear near but above and below the u = pu, curve. Their deviation from
the theoretical curve represents a bias owing to the presence of a significant initial angular
velocity. The experiments that produced this data were unable to shed any light on the
significance of rolling dissipation and the moment coefficient. The reason is that current laser

0.2

w=f

0.1 +

Impulse ratio

I | 9
0 30 60 90

Angle of incidence

Fig. 5. Behavior of the impulse ratio (solid curves), u, for the Coulomb friction model with zero
initial angular velocity; data is from microsphere-surface impact experiments in the presence of
adhesion forces, from Dunn et al. [14].



Formulation of rigid body impact problems using generalized coefficients 71

techniques do not allow direct dynamic measurement of angular velocities or their changes for
particles in the size range being studied.

5. SUMMARY AND CONCLUSIONS

A formulation of the three-dimensional impact problem for collisions of rigid bodies has been
outlined. It develops a set of system equations using a combination of Newton’s laws and
definitions of combinations of kinetic and kinematic coefficients. Since these equations are
always algebraic and linear, a set of solution equations is always possible and provides
expressions for the final velocities, impulse components and kinetic energy loss in terms of the
initial conditions and coefficients. These equations are completely general for all possible
physical processes at the contact interface such as friction, restitution and indentation, etc.

Advantages of this approach over past formulations of the impact problem are the generality,
the availability of solution equations and the independence of the contact process. For cases
where the contact process is governed by kinematic and kinetic conditions, or both, the solution
equations directly provide solutions to the problem. This occurs in such applications as machine
design including analysis, synthesis and optimization of mechanisms. For example, the solution
equations directly provide the energy loss for a mechanism designed to attach at the contact
point. The equations can provide the energy gain necessary to achieve given dynamic objectives.
Other cases where direct solutions are possible include when impulse components and relative
contact velocities have been determined experimentally or through other methods of analysis
such as finite element procedures.

Whenever the rigid body approach to impact is appropriate the solution equations can be
used to examine bounds on the motion by examining limiting or critical values of the
coefficients. In this way classes of solutions can be found and examined. When the contact
interface process (such as dry friction) dictates a nonalgebraic solution technique, the above
method adds no additional difficulty or computational complexity. Computationally, the
approach lends itself nicely to a general computer simulation. The system equations can be
solved as part of a main routine with specific interface processes relegated to different
subroutines.
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