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Summary— This paper covers the topic of the planar eccentric impact of a rigid body at a point.
The tip impact of a slender rod against a massive surface or barrier is used as a means to illustrate
the principles and solution techniques. Two issues are addressed; the first is how the planar impact
problem should be, or at least can be, formulated and solved. The second is how close classical
solutions match those obtained by methods used in the field of shock and vibration. In formulating
the classical impact problem, three well-defined coefficients of restitution are available, the kinematic
(defined as a ratio of velocities), kinetic (defined as a ratio of impulses) and energetic (defined as
a ratio of energies). Their relationship, advantages and disadvantages are discussed. The best
approach to treat tangential impulses in general has not yet reached agreement. For eccentric
impacts with Coulomb friction, for example, various combinations of sliding and sticking including
tangential velocity reversals can occur during contact. Several approaches have been proposed and
all are related. A method using the impulse ratio as a basic parameter is covered and provides
solutions for arbitrarily shaped lamina and arbitrary initial conditions. Solutions of the tip impact
of a long slender rod using the classical approach are found for various combinations of coefficients
of friction and restitution and initial velocities. The final velocities, impulses and energy losses from
these solutions are compared with solutions obtained by integrating the differential equations of
motion of a rigid rod striking a viscoelastic surface. The comparisons show excellent agreement
for most of the cases considered.

1. INTRODUCTION

Some seemingly unusual results have arisen in the search for a solution technique for the
eccentric, point collision problem of two rigid bodies (lamina) and the special case of the
collision of a rigid body with a massive plane. One author, Stronge [ 1], refers to paradoxes
in planar impacts. Mason and Wang [2] claim that inconsistencies exist in planar rigid
body dynamics when dealing with contact of a moving rigid body against a plane. Though
analytical solution techniques to problems such as these have been somewhat elusive, all
solutions must follow Newton’s laws of motion and should possess characteristics observable
in nature. As Stronge [3] points out, central collision problems pose no difficulties since
tangential contact velocity reversals cannot occur. Existing methods have produced
solutions which show an increase in kinetic energy in eccentric collisions. Examples are
given by Kane and Levinson [4] for a double pendulum. Brach [ 5] points out that energy
gains can occur through improper treatment of the tangential impulse. Stronge [3] shows
that improper treatment of restitution can also be a cause of energy gains; specifically he
has shown that the kinematic coefficient of restitution is dependent on friction if the
direction of the force varies during contact.

One of the complexities involves restitution (normal to the contact plane) since three
definitions exist giving three distinct coefficients for eccentric impacts [6]. These are the
kinematic coefficient, e (defined as a ratio of velocities, also known as Newton’s coefficient),
the kinetic coeflicient, R (defined as a ratio of impulses, also known as Poisson’s coefficient)
and an energetic coefficient, E? (defined as a ratio of energies, or work). The energetic
coefficient has been recently proposed by Stronge [3] and leads to a more consistent
theory of impact but its use in the formulation of the impact problem leads to a nonlinear
equation. Brach [5,7] uses the kinematic coefficient whereas more recently Wang and
Mason [8] favor the kinetic. Strong’s energetic coefficient is based on directly relating
restitution to nonfrictional sources of energy dissipation in a nonconservative system and
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22 R. M. BRACH

is important for at least two reasons. Based on its definition, it can be stated that 0 < E?’<1
and the coefficient E? is independent of the tangential impulse. In contrast, simple numerical
bounds for the other two coefficients do not always exist, and e and R generally are not
independent of the tangential impulse (typically due to friction). For central impacts, their
mutual interdependence is given by E? = ¢R and explains the notation using the square
of E. In general their relationship is more complicated [9]. So which should be used?
Actually, all of the coefficients have utility, advantages and disadvantages. The classical
impact problem is algebraic. When used in the problem formulation, the kinematic (or
kinetic) coefficient leads to a linear system of equations for the impact problem whereas
the energetic coefficient leads to a nonlinear equation. On the other hand, the energetic
coefficient has the significant advantages mentioned above. Since the coefficients are related
constants in the impact problem (constants, in the sense that they do not depend on the
unknowns, the final velocities), their choice is a matter of convenience. The method covered
in this paper attempts to exploit the advantages of both e and E*.

A second reason that solutions of the planar collision problem can be unrealistic is
because of the improper treatment of the tangential impulse. Tangential impulses arise
from different physical effects. Examples are indentation, viscous friction and Coulomb
(dry) friction. The latter is the only one considered explicitly in this paper and can lead
to stick—slip motion. An improper value of the tangential impulse for a given physical
system and initial conditions can lead to unrealistic solutions that show a gain in kinetic
energy. Different approaches to properly determine the tangential impulse have been used.
Routh proposed a graphical procedure which tracks the normal and tangential impulse
components, p,(t) and p,(t), (where 7 is time) throughout the contact duration. Stronge
[1,3] uses an analytical approach to track the normal and tangential impulse components
through the impact to reach a solution. Brach [5,7] uses the concept of the ratio u of the
final tangential to normal impulse components. Features of this approach include its
applicability to arbitrary tangential processes (not just dry friction) and the ability to
express the solution of the impact problem and the corresponding energy loss in terms of
the initial velocities and the parameters e and p. Although Brach has provided bounds on
the final or global value of the ratio for classes of solutions, no specific means have been
proposed for the calculation of the value of u for a specific problem or set of initial
conditions. This is done in this paper, however. In light of the newly defined energetic
coefficient of Stronge [3], a re-evaluation of these procedures is necessary. This is done
here for the method based on the impulse ratio and using the kinematic coefficient of
restitution. Wang and Mason [ 8] use Routh’s method with the kinetic coefficient of Poisson.
There is no inherent problem with this approach except that their solution technique does
not take into account the unknown bounds of R and so is incomplete.

Some guidelines are presented in order to make the solution process systematic. Since
different possible tangential motions must be considered, some bookkeeping is usually
necessary. Additional study is necessary to develop a simple and convenient computational
scheme.

Once the solution technique is covered, another question is addressed. That is, how
accurate are the predictions of classical impact theory? This question for rigid body collisions
has not been approached to any great extent in the past, perhaps because the solution of
the eccentric collision problem has not been readily available, as indicated earlier. The
question of accuracy is studied comparatively through an example, that of the impact of
the tip of a long slender rod against a massive flat surface. This example has been covered
in many papers and books on impact [10,11,3,8,9,5] with varying degrees of success at
achieving a solution. No experimental results are available for this example. So the results
using classical theory are compared to the response obtained from an analytical method
commonly used in the field of shock and vibration. Specifically the rigid body response of
a rod whose tip strikes a relatively soft, viscoelastic surface is calculated using numerical
integration of the vibroimpact model of Hunt and Crossley [ 12]. The circumstances of a
rigid rod hitting a soft surface (a metal rod striking an elastomer, for example) rather than
a hard surface were chosen for a specific reason. The soft surface creates conditions leading
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to relatively long contact times compared to, say, metal-to-metal impact. This in turn
allows the rod to acquire a significant change in angular position during the contact
interval, a condition violating the assumptions of classical theory. The numerical integration
of the rigid body equations calculates position changes. Thus, a rigid rod striking a soft
surface should provide a test for classical theory that is more stringent than the impact of
a hard rod with a hard surface.

2. CLASSICAL IMPACT THEORY

An arbitrarily shaped rigid body (planar lamina) is shown colliding with a surface at
point C in Fig. 1 where the ¢ axis lies on the surface. The classical problem is defined here
such that the mass, m, centroidal inertia, mk?, dimensions, orientation of the body and
initial velocities are specified. The impact duration begins at 7, and ends at t,, where 1 is
time. A unique solution for the final velocity components and impulse components is
assumed to exist and is sought. Three equations for this problem are given by Newton’s
law as

m(V, —v,) =P, (1)
m(V, —v) =P, (2)
mk*(Q — w) = yP, — xP,. (3)

In these equations, capital symbols indicate final values of velocity components V,, ¥, and
Q and impulse components P, and P, at the time of separation from the surface at ,. Small
or lower case symbols v,,, v, and w indicate initial values, at time t,. The velocity components
V., ¥, v, and v, are mass center velocities. Additional equations are needed since there are
five unknowns, V,, ¥}, Q, P, and P,. Based on the assumption of a unique solution, the
two constants e and p are defined such that e = — V. /v, and p = P /P,. V., and v, are
normal velocity components at the contact point C. The quantities e and y are called the
kinematic coefficient of restitution and the impulse ratio, respectively, and furnish the
remaining two equations

Vea = —ecy (4)
P, = uP,. (5)
These are linear algebraic equations leading to final velocities given by the equations
Vo =1, — (1 + e)(v, + yo)/D (6)
Vi=0 — w1 + e)(v, + yo)/D, |pl <|pcl (7)
Q=ow—(y—px)(1 +e)(v, + yo)/Dk?, |p] < |p (8)

where D = 1 + y(y — ux)/k* and p, represents a characteristic value of the impulse ratio
as discussed by Brach [7]. Equation (4) is equivalent to an equation expressing energy

PL ® y
1c

%F’z

F1G. 1. Free body diagram of a lamina with mass, m, and centroidal inertia, mk2.
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loss which itself is quadratic in the velocities. It can be shown that as a consequence, two
solutions exist. One is for + e and the other for —e. A negative value of e implies penetration
rather than rebound. The interpretation and utility of this solution is not discussed here.
With an added constraint, ¢ > 0, the solution of Eqns (1)—(5) is unique.

Coefficients of restitution

Following the introduction of the energetic coefficient of restitution, E, by Stronge [3],
Brach [6] has shown that for planar collisions
2
e=RETIVZ ) g pa oy 9)
k= + y(y — pax)
The quantities u, and pg in Eqn (9) are the ratios of the tangential to normal impulses
over the approach and rebound intervals, respectively, and are called partial impulse ratios.
The kinetic coefficient of restitution is defined by R = PR/ P2 where these impulses are the
normal rebound and approach impulses, respectively. Equation (9) shows that when y = 0
(the condition of a central impact) e and R are identical. This also follows when u, = pg,
particularly for the frictionless case where both are zero. A relationship between e and E>
similar in nature to Eqn (9) can be found, but it takes multiple forms due to the presence
of stick—slip motion. For a discussion of this topic see Smith [9].

Impulse ratios

Because impulse ratios are used in the approach followed in this paper it is necessary
to investigate their behavior and how they are computed. Consider an arbitrary subinterval
of time At = 1, — 7, within the contact duration, thatis 7, < 7, < 7, < 7,. For this interval,
equations comparable to Eqns (1), (2) and (3) are

m[vn(rb) - vn(ra)] = pn(Tb) - pn(Ta) = Apn (10)
m[v(1p) — vi(7,)] = (1) — p(7,) = Ap, (11)
mk*[o(1,) — o(7,)] = yAp, — xAp, (12)

where p,(7) and p,(t) are dynamic impulse variables defined over an indefinite time interval
7—1,. Instantaneous velocities at the contact point can be written as

Uen(T) = v,(17) + yoo(7) (13)
Ue(7) = v(7) — x0(7). (14)

Equations (10), (11) and (12) can be solved for the velocities v,(7,), v,(7,) and w(z,) and
substituted into Eqns (13) and (14) evaluated at t = t,. The resulting pair of equations are
linear in the impulse variables Ap, and Ap,. Solving them for Ap, and Ap, and taking the
ratio gives

(A = Ap. _ (k2 + y)[ve(t) — va(ta)] + xy[vea(Ts) — vea(Ta)]

Ap, (K + x*)[vea(th) = veal()] + Xy [ve(Th) — ve(7,)]
This equation can be used to determine the impulse ratio over any interval t,—7,. The
technique illustrated here involves solutions of Eqn (15) over sequential subintervals of
unidirectional sliding or no sliding. In some solutions, u(At) is known and Eqn (15) is
solved for a velocity; in others, u(At) is found from known velocities. This procedure
furnishes the various impulse ratios encountered in the above solution equations for the
classical impact problem and eventually provides all of the unknowns.

(15)

Examples

As an example, consider the tip collision of a slender rod. The problem is illustrated in
Fig. 2; Table 1 lists the specific conditions chosen. Coulomb friction with a coefficient of
/= 0.01 generates the tangential force and impulse. Using Eqns (6), (7) and (8), the final
tangential contact velocity is Vg, = v, — 3(1 + ¢)/5 when the surface is frictionless, that is,
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Fi1G. 2. Free body diagram of a slender rigid rod striking a massive plane at point C.

TABLE 1. SLENDER ROD EXAMPLE, PHYSICAL PARAMETERS

Mass m =1 (kg)

Length L=1(m)

Moment of inertia I = mk* (kgm?)

Radius of gyration k* = I?/12 (m?)
Orientation 0 = 45° _
Centroidal coordinates X=y= 1/2\/ 2 (m)
Initial velocities v,=—1,w=0(rads™")

v, =—10,0,02,06 (ms™!)
Coefficient of restitution E* = 1.0
Coeflicient of friction f=0.01

TABLE 2. SEQUENCE OF EVALUATIONS OF EQN (15)

Time Impulse

interval, Velocity ratio Computed

At changes u(Az) quantity

Loty =1l (Vens Ocr) = (Vea(Tsr ), 0) -f Vealtsg) = —0.010

2 Teg > T (vcn(Tsr), 0) = (0, v (7)) +f ve(7) = —0.006
oot (Vcns V) = (0, v, (7)) ? Uy = —9.788 x 1073
4 11, (0, v (7)) = (Veu, Ve = +f Vel(E,f) = —0.596
500-1 (en e = (Vens Ve ? i= 13564 x 1074

*Stop and reverse time.
** Time separating approach and rebound.
v, =—10,0,=06ms™ !, E? = 1.0, = 0.01.

for P, = u = f= 0. Consider first the case where ve, = v, = 0.06 ms~ L. Brach [7] shows
that for a kinematic coefficient value of e = 1, the only realistic solution is for the value
of u = 0 (and, coincidentally, f = 0). For the small value of friction used here, it would be
expected that a reversal of tangential tip velocity should occur as in the frictionless case
that that it would be achieved for e < 1. Table 2 outlines a sequence of evaluations of Eqn
(15) which leads to the final impulse ratio, u = P,/P,.

The first evaluation of Eqn (15) is from the beginning of contact at 7, to the time g
at which time sliding stops and reverses. For this interval, sliding is unidirectional and
u(At) = —f. Equation (15) is solved for the value of the normal contact velocity and gives
ven(Tsr) = —0.010. Because of its negative value, this shows that the impact is still in the
approach phase. The next evaluation is over the interval from 7g; to 7, the latter of which
is defined as the time approach ends and rebound begins, and is when v, (%) = 0. During
this interval u(At) = +fsince sliding has reversed. Using Eqn (15) again provides a value
of the tangential velocity of v, (T) = —0.006. The next evaluation listed in Table 2 is for
the interval of t,—7 and gives a value of the approach impulse ratio u, = —9.788 x 1073,
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The next interval is from T to 7, which is the rebound phase so u(At) = pz = +f. This
provides a value of the final tangential velocity at the contact point of Vg (t,) = —0.596.
The fifth and last evaluation of Eqn (15) in Table 2 is over the entire interval of contact
and provides the final impulse ratio u = p(t,) = 1.3564 x 1074,

The coefficient of restitution did not enter into the first three evaluations of Eqn (15).
Evaluations 4 and 5 required the use of V, = —evc,. Since u, and ug are both known at
evaluation 4, e can be calculated from a given value of E. In this example, E? is chosen
to be 1, giving e = 0.9941 and u = 1.3564 x 10™*. These values can be substituted into
Eqns (6), (7) and (8) to calculate the final angular velocity and the final mass center
velocities. The final impulses can be calculated from Eqns (1) and (2), providing a complete
solution.

Consider the same example but with v, = 0.2. Rather than a specific solution, consider
all physically realistic solutions for ranges of the coefficients of restitution and impulse
ratios. The kinetic energy loss as a function of p for e =0, 0.5 and 1 corresponding to
the solution equations (6), (7) and (8) is shown in Fig. 3. If one considers solutions which
gain kinetic energy as being unrealistic, then not all combinations of e and p provide
realistic solutions. For example, e = 1 and f = 0.9 gives u = 0.5319 and final velocities with
a gain in energy of more than 12% (relative to the preimpact energy). A way of insuring
realistic solutions is to place bounds on the energy loss curves by limiting e and p as
suggested in Brach [7]. The bounds discussed there for this example are reproduced in
Fig. 3 as the curves OC and AA'B and the ¢ = 1 and e = 0 curves. The A’'B curve is the
U= o curve, where sliding ends at or before separation. The energy loss curves
corresponding to E = 1, E = 0.5 and E = 0, obtained from the solution technique discussed
above are added to the curves. Energy loss for 0 < E < 1 fills the space between the E = 1,
E =0, OC and A’B curves. The energy bound curves suggested by Brach [ 7] include the
space between the e =1, E =1 and AA’ curves. Whether these points are physically
attainable should likely be answered by experiment. Results from the viscoelastic analysis
presented later in this paper suggest, however, that at least some of these points with values
of E > 1 could be physically attainable. Classical impact theory restricts solutions to E < 1.
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FI1G. 3. Kinetic energy lost in a slender rod impact, as a fraction of its initial energy for v, = 0.2. Thin curves

correspond to solution equations (7), (8) and (9) for a broad range of values of e and y. Curves OC, AA” and

A'B are bounds established by u =0, u = u; and u = u,, respectively. Heavy curves correspond to solution
equations (7), (8) and (9) for indicated values of Stronge’s energetic coefficient of restitution.
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Observations

Some guidelines can be garnered from the above equations and the first example solution.
It generally proves helpful to examine the frictionless solution before a solution is sought
for nonzero f. This is done easily by setting ¢ = 0 in Eqns (6), (7) and (8) and serves to
indicate the initial direction of sliding and whether or not a reversal is likely to occur.
Another factor to keep in mind is that the coefficient of restitution does not enter into the
evaluations of Eqn (15) until final velocities are encountered. Solving the problem for
additional values of the coefficient of restitution requires only 1 or 2 recalculations. Another
observation is that the solution procedure not only determines the final impulse ratio p,
but furnishes the final contact point velocities V¢, and V. This is not a complete solution
of the problem, however. Equations (6), (7) and (8) must still be used to determine the
angular velocity Q and the mass center velocities ¥, and V,.

From the example with v, = 0.2, it is seen that energy bounds exist on the impact problem
solutions. These bounds are presented in Brach [ 7] for several initial tangential velocities,
but only for the kinematic coefficient, e. The establishment of the energy loss curves based
on E is more informative and illustrates the significance of Stronge’s energetic coefficient.

3. IMPACT SIMULATION

Consider a completely different approach to the determination of the dynamic response
of a rod striking a surface. The mass center coordinates of the rod are n(t) and t(t) and
the angular position is 6(t), where 7 represents time. Figure 2 shows a free body diagram
illustrating normal and tangential forces F,(t) and F (t). Newton’s laws can be written as

-mii = F (16)
mi = F, (17)
mk*0 = F_Lsin § — F,Lcos 0. (18)

Suppose the rod is perfectly rigid and the surface provides elasticity and dissipation. Hunt
and Crossley [ 12] discuss different types of elastic and viscous models which apply to the
process of impact. Along the line of their recommendations, the normal force is chosen
here to have the form

F, = knf — (kicnk = —xnk(1 + (hg). (19)

Here n¢ is the normal displacement of the tip of the rod at the contact point, x is the
stiffness of the surface, { is a damping factor and the exponent p is a constant. In contrast
to the type of linear viscous damping usually used in vibration theory, the damping in
Eqn (19) does not have an instantaneous value at the initiation of contact. For Coulomb
friction the tangential force can be written as

Fl = _anfc/uc]s [fc| #0 (20)

where f. is the tangential tip velocity. Equations (16)—(20) form a system of three ordinary
differential equations which are solved numerically using a fourth order Runge—Kutta—Gill
method. As part of the solution, the motion and forces must be monitored to determine
if relative tangential motion at the tip becomes zero and whether or not it remains zero.
When relative tangential motion at C is zero, Eqn (20) is replaced by a kinematic constraint
force of the form

F,I? cos 0 sin § — 2mLk?6? sin 6

F, = , fe=0. 21
' 4k* + I? cos* 0 ¢ (21)

To assure accuracy in estimating the stopping conditions, when the tangential tip velocity
changed sign, the zero crossing time was estimated by interpolation, the integration interval
was reduced and the last integration was repeated. The condition for “sticking” is if the
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TABLE 3. RESULTS FROM SIMULATION AND CLASSICAL SOLUTION* ROD ORIENTED AT 45°

Damping  Contact Normal Contact  Angular  Energy

parameter  duration Final impulse Impulse Kinematic Energy velocity  velocity loss
14 T, — 7T, position P, ratio coeff coeff Ve Q T,

(sm™1) (s) (deg) (Nm) Iz e E? (ms™!) (rads™') (%)
0.00 0.061 50.8 0.774 0.000 1.079 1.054  —0.464 1929 0.32
0.04 0.061 50.8 0.764 0.000 1.052 1.000  —0.450 190.4 1.81
45.0 0.798 0.000 0.994 1.000  —0.596 193.9 0.35
1.69 0.064 51.1 0.559 —0.004 0.500 0213  —0.162 138.6 23.6
45.0 0.599 —0.003 0.500 0253  -0.303 146.0 22.1
20.0 0.023 46.7 0.409 —0.009 0.050 0.002  —0.007 100.8 29.3
45.0 0.418 —0.009 0.050 0.003  —-0.036 102.4 29.3

* Classical solution results in bold; common values underlined.
Initial normal velocity v, = —1ms™'; initial tangential velocity, v, = 0.6 m s~ !; friction coefficient, f = 0.010;
surface stiffness, ¥ = 1000 N'm ™!,

kinematic constraint force given by Eqn (21) is below the friction force, otherwise sliding
continues in the reverse direction. The condition for the end of impact is ne = 0.

The surface elastic parameters such as the exponent p =1 and the stiffness
x = 1000 Nm ™' were chosen to represent a relatively soft surface. Values of the damping
factor { are varied as necessary to produce desired coefficients of restitution.

Results

Consider first the example conditions covered earlier for a friction coefficient f'= 0.01
and an initial tangential velocity of v, = 0.6 m s~ !. Table 3 lists some pertinent results from
the simulation and corresponding results from classical impact theory. With no dissipation,
{ = 0, the simulation gives a response with an energetic coefficient E = 1.027 and a kinematic
coefficient e = 1.079. The normal tip speed increases to 1.079 m s~ ! as a result of the impact.
(With zero friction the corresponding values are E = 1.027 and e = 1.085. Despite values
greater than 1, overall energy is conserved. These results are not unrealistic because in the
simulation, the angular position changes and permits a final normal tip speed greater than
the original.) For f = 0.01, the tangential tip speed reverses but ends up lower in magnitude
than its original value. The angular velocity, which originally is zero, increases significantly
due to the offset of the forces from the mass center. For the remaining data in Table 3,
surface dissipation is added (in a trial-and-error fashion) to reach specific values of the
coefficient of restitution to form a basis of comparison. In some cases the two methods
give noticeably different final (tangential) contact speeds V. The final angular velocities
are quite close, however. The kinetic energy losses, T;, show good agreement, particularly
as the damping is increased. The classical solution’s assumption of negligible displacements
(as viewed by the change in angular position) also becomes better as the damping is
increased (and the impact duration becomes shorter).

For the system defined in Table 1, Tables 4 and 6 summarize results from the simulation
for four different initial tangential speeds. Tables 5 and 7 show comparisons with results
from impact theory. The various values of initial tangential speed were chosen to correspond
to the cases studied and presented by Brach [5,7]. In addition to varying the damping,
the friction coefficient is increased to reach and exceed various limiting conditions such as
when sliding ends just as T = 7, or earlier during the contact duration (by further increases
in friction). When the friction coefficient equals or exceeds a certain limiting value, V,, = 0.
For these cases the classical solution can be found using the limiting value u = p,, [ 7] where

(k* + y*)r/(1 + e) + xy

= 22
Ho k2 +y? + xyr/(1 + e) (22)

and r = (v, — xw)/(v, + yo). A review of the results shows that the classical theory predicts
these limiting values of the impulse ratio well. Kinetic energy losses agree quite well as do
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TABLE 4. SIMULATION RESULTS, SLENDER ROD TIP IMPACT

Normal  Damping Contact Normal
Friction stiffness  parameter duration Final impulse Impulse Kinematic Kinetic Energy
coeff k ¢ 1, — 1T,  position P, ratio coeff coeff coeff
f (Nm™)  (sm™") (s) (deg) (Nm) u e R E?

Initial tangential velocity, v, = 0.0 ms™!

0.0 1000 0.0 0.061 50.8 0.777 0.0 1.085 0.972 1.054
0.5975* 1000 0.0 0.077 49.7 1.214 0.597 1.070 0.975 1.043
1.07 1000 0.0 0.077 49.7 1.219 0.597 1.078 0.975 1.051
0.0 1000 1.69 0.064 51.1 0.561 0.0 0.501 0.423 0.212
0.5888% 1000 1.61 0.080 50.0 0.882 0.589 0.500 0.444 0.222
0.5905* 1000 1.61 0.080 50.0 0.883 0.589 0.503 0.444 0.223
L0t 1000 1.68 0.080 49.9 0.882 0.583 0.500 0.429 0.214
0.0 1000 20.0 0.023 46.7 0411 0.0 0.050 0.040 0.002
0.5968* 1000 20.0 0.031 46.5 0.645 0.596 0.050 0.043 0.002
1.0t 1000 20.0 0.030 46.4 0.641 0.545 0.050 0.041 0.002

Initial tangential velocity, v, = 0.2ms™?

0.0 1000 0.00 0.061 50.8 0.777 0.000 1.085 0.972 1.054
0.5987* 1000 0.00 0.075 50.4 1.062 0.521 0.971 0.979 0.951
1.0F 1000 0.00 0.075 50.5 1.060 0.522 0.969 0.977 0.947
0.0 1000 1.70 0.064 51.1 0.560 0.000 0.499 0.421 0.210
0.5993%1 1000 1.58 0.078 50.7 0.792 0.483 0.501 0.472 0.236
1.07 1000 1.58 0.078 50.7 0.791 0.485 0.500 0.472 0.236
0.0 1000 20.0 0.023 46.7 0.411 0.0 0.050 0.040 0.002
0.6019* 1000 20.0 0.029 46.7 0.566 0.463 0.050 0.044 0.002
1.0% 1000 20.0 0.029 46.7 0.567 0.481 0.050 0.044 0.002

* Smallest coefficient of friction to cause zero tangential velocity at separation.
+No sliding at separation.
} Smallest coefficient of friction to cause sliding to stop and reverse.

Oriented at 45°; initial normal velocity v, = —1ms™ 1.

the angular velocity changes. For some variables the percentage error may be quite large
but in most cases this is when the values of the variables are small in magnitude compared
to most others in the problem.

A specific aspect of the comparisons worth noting concerns bounds on the impulse ratio,
in particular u,. With some exceptions, Tables 5 and 7 show that the simulation gives a
value of u, within a few percent of that from impact theory. Exceptions occur for large
values of e and where v, = 0.6. It appears that when the impact theory solution is a good
approximation, p, is a good approximation of the value of the limiting value of friction.
Higher values of friction still result with no sliding at separation but still have the same
impuse ratio, u, which is predicted by the methods of this paper.

4. DISCUSSION AND CONCLUSIONS

Earlier work on the solution of the classical impact problem by Brach [5,7] shows the
existence of bounds on the final values of the impulse ratio ¢ = u(z,) such as u, given by
Eqgn (22). Two others are commonly encountered. These are u; and pu,,,,, both of which
depend on the coefficient of restitution. The first, py, is the value of u, which if exceeded
(in magnitude), leads to an impact with a gain in kinetic energy (and provides the bound
AA’ in Fig. 3, for example). The latter is the value of u which, with e = 0 (E? = 0), leads
to the maximum possible energy loss for the given physical system and initial conditions.
The latter can be quite useful in applications to determine an upper bound of the energy
loss. The former, pr, deserves some discussion here. In earlier work, the need for y; arose
because the problem formulation is based on the kinematic coefficient ¢ and did not include
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TABLE 5. COMPARISON OF IMPACT THEORY TO SIMULATION RESULTS, SLENDER ROD TIP IMPACT

Final Final Final Final
Normal sliding  angular Energy Normal sliding  angular Energy
impulse Impulse velocity velocity loss impulse Impulse velocity velocity loss
P, ratio Ve Q T, P,(t,)  ratio i(t,) 0(t,) T,
(Nm) U (ms™!) (degs™?) (%) (Nm) I (ms™!) (degs™) (%)
Initial tangential velocity, v, = 0.0ms ™!
Coefficient of restitution, e = 1
0.800 0.0 —1.2 194.5 0.0 0.777 0.0 -1.07 193.5 0.00
1.250 0.6* 0.0 121.5 0.0 1.214 0.597 0.0 128.5 0.95
1.250 0.6* 0.0 121.5 0.0 1.219 0.597 0.0 129.0 0.02
Coefficient of restitution, e = 0.5
0.600 0.0 —0.90 145.9 30.0 0.561 0.0 —0.76 1384 32.1
0.938 0.6* 0.0 91.2 46.9 0.882 0.589 0.0 92.5 499
0.938 0.6* 0.0 91.2 46.9 0.883 0.589 0.0 92.6 49.8
0.938 0.6* 0.0 91.2 46.9 0.882 0.583 0.0 92.5 49.9
Coefficient of restitution, e = 0.05
0.420 0.0 —0.63 102.1 39.9 0411 0.0 —0.60 100.5 39.8
0.656 0.6% 0.0 63.8 62.3 0.645 0.596 0.0 64.0 62.2
0.656 0.6* 0.0 63.8 62.3 0.641 0.545 0.0 64.7 61.4
Initial tangential velocity, v, = 0.2 ms™?
Coefficient of restitution, e = 1.0
0.800 0.0 —-1.0 194.5 0.0 0.776 0.0 —0.87 193.5 0.0
1.101 0.456t -0.2 145.6 0.0 1.062 0.521 0.0 135.1 0.8
1.101 0.456t -02 145.6 0.0 1.060 0.522 0.0 135.0 1.0
Coefficient of restitution, e = 0.5
0.600 0.0 -0.7 145.9 28.8 0.560 0.0 —0.56 138.3 309
0.862 0.507* 0.0 103.7 333 0.792 0.483 0.0 105.0 36.4
0.862 0.507* 0.0 103.7 333 0.791 0.485 0.0 105.1 36.4
Coefficient of restitution, e = 0.05
0.420 0.0 —043 102.1 38.4 0411 0.0 —0.40 100.4 38.3
0.580 0.46* 0.0 76.0 479 0.566 0.463 0.0 76.1 479
0.580 0.46* 0.0 76.0 47.9 0.567 0.481 0.0 75.9 48.1
* Impulse ratio, .
+Impulse ratio, py.
Oriented at 45°; initial normal velocity v, = —1ms™ 1.

the bounds on E?. It is possible that values of e < 1 for eccentric impacts can lead to
corresponding values of E* > 1. At the time the bound u; was derived, Stronge’s energetic
coefficient had not yet been introduced into the literature and a relationship between e
and E? was not available. Presently this relationship is better understood and the bound
E? < 1 can be used to establish bounds on e and the use of ;; may no longer be necessary.
However it was seen from the simulation that values of E* > 1 can occur, so this topic
needs more study.

The limiting impulse ratio, u,, conveniently provides the value, P, = u,P,, of the
tangential impulse for the classical solution necessary to cause sliding to end at or before
the time of separation. This same value also provides partial bounds of the energy loss
curves T;(E) (as shown in Fig. 3) and an overall upper bound on energy loss with
Hmax = ﬂo(e)|e=0-

Four sets of initial conditions were examined, each differing by the initial tangential
velocity. Values of v, = 0.0, 0.2, 0.6 and — 1.0 were examined. The differences between
results of classical impact theory and the simulation for the first two values, 0.0 and 0.2
are typically quite small. That is, the final velocities, impulses, impulse ratios (final and
critical) and energy losses differ typically by about 10% or less; in many cases, the differences
are only a few percent. Differences are greatest for some of the impacts with an initial




Planar impact theory at a point 31

TABLE 6. SIMULATION RESULTS, SLENDER ROD TIP IMPACT

Normal  Damping Contact Normal
Friction stiffness  parameter duration Final impulse Impulse Kinematic Kinetic Energy
coeff k { T, — T4 position P, ratio coeff coeff coeff
f (Nm™")  (sm™') (s) (deg) (Nm) u e R E?

Initial tangential velocity, v, = 0.6ms ™!

0.0 1000 0.0 0.061 50.8 0.777 0.0 1.085 0.972 1.054
0.5908* 1000 0.0 0.068 51.2 0.801 0.278 0.822 1.095 0.900
1.0t 1000 0.0 0.069 51.3 0.787 0.282 0.800 1.061 0.848
0.0 1000 1.69 0.064 51.1 0.561 0.0 0.501 0.423 0.212
0.5481% 1000 1.21 0.069 50.4 0.616 0.166 0.500 0.641 0.320
0.5899* 1000 1.31 0.070 51.5 0.616 0.162 0.500 0.611 0.306
1.0f 1000 1.27 0.070 51.6 0.613 0.159 0.500 0.613 0.307
0.0 1000 20.0 0.023 46.7 0411 0.0 0.050 0.040 0.002
0.5950* 1000 20.0 0.027 472 0.406 —0.014 0.050 0.051 0.003
1.0t 1000 20.0 0.028 47.3 0.405 —0.017 0.050 0.051 0.003
Initial tangential velocity, v, = —1.0ms™!
0.0 1000 0.00 0.061 50.8 0.777 0.000 1.085 0.972 1.054
0.8555*% 1000 0.00 0.089 47.7 1.617 0.855 1.039 0.985 1.023
1.0% 1000 0.00 0.089 46.9 1.785 0.813 1.291 0.789 1.018
0.0 1000 1.69 0.064 51.1 0.561 0.000 0.501 0.423 0.212
0.9120* 1000 1.49 0.097 46.9 1.301 0.911 0.499 0.480 0.240
1.0t 1000 1.77 0.096 46.3 1.307 0.907 0.500 0.308 0.154
0.0 1000 20.0 0.023 46.7 0.411 0.0 0.050 0.040 0.002
0.9882* 1000 20.0 0.071 45.2 1.031 0.988 0.050 0.050 0.003
1.01 1000 20.0 0.055 45.1 1.031 0.989 0.050 0.031 0.002

* Smallest coefficient of friction to cause zero tangential velocity at separation.
1 No sliding at separation.
I Smallest coefficient of friction to cause sliding to stop and reverse.

Oriented at 45°; initial normal velocity v, = I ms™%.

velocity of v, = 0.6. For example, for e = 1 and a friction coefficient f = 1.0, the final impulse
ratio is 0.0 from classical theory but is 0.282 from the simulation; correspondingly the
energy loss is 0.0 from classical theory, but 6.94% from the simulation. Overall,
column-to-column comparisons in Tables 5 and 7 show that the classical method and
simulation agree quite well. However, there are notable exceptions. Unfortunately, there
seem to be no clear trends which lead to a general criterion on accuracy.

In general, the procedure of sequential applications of Eqn (15) for u(Ar) and use of
Eqns (6), (7) and (8) leads to a solution of the classical impact problem. Examples given
include contact point velocity reversals which are usually the most tedious cases to solve.
(The reader may wish to take note that a spreadsheet can be organized to conveniently
handle solutions of these problems.) Although the examples here are for a single rigid body
colliding with a barrier, the procedure is valid for the relative velocities of the impact of
two rigid bodies. Once p is found, the final solution equations for a two-mass impact
can then be used to complete the solution. Of course, solutions of the impact equations
for a class or range of friction values can still be found using the solution equations and
bounds on p such as shown in Fig. 3 without the use of Eqn (15). This approach is
particularly useful for cases where Coulomb friction is not appropriate and where methods
based on integration are impractical such as for the impact of highway vehicles [ 13].

Mason and Wang [2] have approached the problem of a rod with an established tip
contact (zero initial normal velocity) sliding with constant tangential velocity along a flat
surface in the presence of Coulomb friction. They conclude that the only solution has the
nature of an impact with the rod bounding from the surface. They further claim that their
solution demonstrates an inconsistency in Newtonian mechanics. Although this particular




32 R. M. BRACH
TABLE 7. COMPARISON OF IMPACT THEORY TO SIMULATION RESULTS, SLENDER ROD TIP IMPACT
Final Final Final Final
Normal sliding  angular Energy Normal sliding  angular Energy
impulse Impulse velocity  velocity loss impulse Impulse velocity velocity loss
P, ratio Ve Q T P.(t,)  ratio io(t3) 0(1,) T,
(Nm) Iz (ms™') (degs™') (%) (Nm) Iz (ms™!) (degs™!) (%)
Initial tangential velocity, v, = 0.6 ms™*
Coefficient of restitution, e = 1
0.800 0.0 —0.6 194.5 0.0 0.777 0.0 —0.46 193.5 0.01
0.800 0.0* 0.0 194.5 0.0 0.801 0.278 0.0 150.2 5.30
0.800 0.0* 0.0 194.5 0.0 0.787 0.282 0.0 148.7 6.94
Coefficient of restitution, e = 0.5
0.600 0.0 -0.30 145.9 22.1 0.561 0.0 —0.16 1384 23.6
0.732 0.263* 0.0 127.6 17.9 0.616 0.166 0.0 129.6 21.2
0.732 0.263* 0.0 127.6 17.9 0.616 0.162 0.0 129.6 21.3
0.732 0.263* 0.0 127.6 17.9 0.613 0.159 0.0 129.7 21.2
Coefficient of restitution, e = 0.05
0.433 0.0 —-0.03 102.1 29.3 0411 0.0 0.0 100.5 29.3
0.569 0.043* 0.0 100.3 29.3 0.406 -0.014 0.0 100.5 29.0
0.569 0.043* 0.0 100.3 29.3 0.405 —0.017 0.0 100.6 29.0
Initial tangential velocity, v, = —1.0ms™!
Coefficient of restitution, e = 1.0
0.800 0.0 —2.20 194.5 0.0 0.777 0.0 —2.07 1935 0.0
1.633 0.846* 0.0 60.7 68.6 1.617 0.855 0.0 65.3 68.2
1.633 0.846* 0.0 60.7 68.6 1.785 0.813 0.0 79.3 50.0
Coefficient of restitution, ¢ = 0.5
0.600 0.0 -19 145.9 15.0 0.561 0.0 —1.76 1384 16.0
1.395 0.905* 0.0 30.4 92.1 1.301 0.911 0.0 31.1 92.5
1.395 0.905* 0.0 30.4 92.1 1.307 0.907 0.0 30.5 924
Coefficient of restitution, e = 0.05
0.420 0.0 —0.43 102.1 38.4 0411 0.0 —1.60 100.46 199
1.031 0.987* 0.0 0.0 99.6 1.031 0.988 0.0 3.06 99.9
1.031 0.987* 0.0 0.0 99.6 1.031 0.989 0.0 3.06 99.9
* Impulse ratio, g = .
Oriented at 45°; initial normal velocity v, = —1ms™'.

problem was not solved here, it is easy to see from the Eqn (4) that if v, is zero, then V¢,
also must be zero and no impact takes place. Consequently, the claimed inconsistency does

not exist for this problem.

Though comparisons are made between results from classical theory and simulation
solutions, they are not exhaustive. The question of the accuracy of the classical theory
needs additional investigation.

Acknowledgement—The assistance and advice of Professor William J. Stronge, University of Cambridge, is

gratefully recognized.

1.
2.

N AW

T
R

REFERENCES

W. J. STRONGE, Rigid body collisions with friction. Proc. R. Soc. A 431, 169-181.

M. BrACH, Rigid body collisions. Trans. ASME, J. Appl. Mech. 56, 133138 (1989).
M. BRrACH, Restitution in point collisions. In Computational Aspects of Impact and Penetration (Edited by
F. Kurak and L. ScHWER). Elmepress, Lausanne, Switzerland (1991).

W. J. STRONGE, Friction in collisions: resolution of a paradox. J. Appl. Phys. 69(2), 610—612 (1991).
M. T. MasoN and Y. WANG, On the inconsistency of rigid body frictional planar mechanics. IEEE Int.
Conference on Robotics and Automation, pp. 524-528, Philadelphia, PA.
R.
R.

R. KANE and D. A. LEVINSON, Dynamics: Theory and Application. McGraw-Hill, New York (1985).




Planar impact theory at a point 33

7. R. M. BRACH, Mechanical Impact Dynamics. John Wiley, New York (1991).

8. Y. WANG and M. T. MasoN, Two dimensional rigid body collisions with friction. J. Appl. Mech. 59, 635-642
(1992).

9. C. E. SmITH, Coefficients of restitution. Submitted for publication (1992).

10. W. GoLDSMITH, Impact. Edward Arnold, London (1960).

11. M. MACAULAY, Introduction to Impact Engineering. Chapman and Hall, London (1987).

12. K. H. HUNT and F. R. E. CROsSLEY, Coefficient of restitution interpreted as damping in vibroimpact. Trans.
ASME, J. Appl. Mech. 97, 440445 (1975).

13. S. H. BackarTis (Ed.), Reconstruction of Motor Vehicle Accidents, A Technical Compendium, PT-34, SAE,
Warrendale, PA (1989).




