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Abstract: Equations of motion are derived for a two-axle, two-wheeled vehicle pulling a one-
axle, two-wheeled trailer. Linear and nonlinear tyre side force models are discussed. Examples
of computer solutions of the equations are presented for both single vehicie motion and articulated
vehicle motion. A comparison of tractor semitrailer manoeuvres with a more elaborate simulation
shows excellent results.
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1 Introduction

The vehicle dynamical simulation described here is intended to produce a general purpose
simulation of moderate complexity. The availability of microcomputers permits calculations
of the type discussed here to be made in almost a routine fashion. As a result, more and
more engineering facilities are capable of these types of calculations. Along with model
development, this article is also intended to provide a range of sample solutions to which
other simulations can be compared.

Different approaches to vehicle dynamics problems are briefly discussed to provide
a perspective. At least four different approaches typically are used to solve vehicle dynamics
problems:

1 Analytical solutions for stability analysis.

2 Special purpose simulation models.

3 Comprehensive computerized solutions of multidegree of freedom models for general
simulation.

4 Application of general purpose, mechanical engineering multibody simulation
software packages.

The first type of analyses begins with a simplified physical model with up to 3 or 4 degrees
of freedom and is followed by a steady forward speed or steady turn constraint. The resulting
equations are then solved in a manner which indicates the effect of various parameters
on the steady motion. (For example, see Ellis, 1969, Huston and Johnson, 1983, Passarello,
1979 and Klein and Szostak, 1980). These methods have been extremely important in
providing basic stability information for vehicle systems. They do not explicitly provide
the motion of the vehicles. The second type of models provide specialized motion
simulations, such as the collision of vehicles with other vehicles or barriers covered by
McHenry and McHenry, 1988a and 1988b, along with post-impact motion.
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The simulation model presented fits into the third category. This consists typically
of the solution of the differential equations of motion of a single vehicle or articulated
vehicle system. These models can range widely in complexity. For example, an existing
single vehicle simulation of Allen et al., 1988 includes the effects of steering, driver
response, nonlinear tyre mechanics, a flexible suspension system, etc. For trucks, a
comprehensive simulation has been developed by HSRI/MVMA; see Gillespie, 1978 and
Hayes, 1980. A comprehensive set of experiments was conducted colaterally in Phase
4 of that model’s development. Phase 4 simulation results are used for comparison with
the results of the simulation.

The last category of simulations is of relatively recent origin. Numerous general
purpose dynamical computer simulation programs have been developed which apply to
a broad variety of machines. They are commercially available as software packages. Some
have been applied to automotive vehicles, both on road and off road as in Croscheck and
Ford, 1988, Molnar, and Claar and Zie, 1988. The last reference provides a review of
the available packages; it also provides an excellent review of various methods available
for deriving dynamical equations of motion.

Obviously, the more comprehensive the physical model being simulated and the more
attention paid to modelling vehicle components (tyre elasticity and damping, transverse
suspension flexibility, wheel-brake slip drag, etc.), the wider the applicability and the greater
the potential for accurate predictions. Unfortunately, this capability comes with a price,
namely, a greater amount of input information is required in order to use the simulation
effectively. Often, this information is unavailable. Another factor which often lessens the
need for high accuracy is the variability of behaviour across ‘identical’ vehicles. Vehicle-
to-vehicle variations can be significant but are seldom measured (because of cost). Even
significant left-to-right asymmetries in the same vehicle can sometimes occur as noted
by Gillespie, 1978. Consequently, the capability of highly accurate prediction techniques
in some applications may be unnecessary. For this reason, the simulation model has the
objective of being a general purpose one of moderate complexity, sufficient to take into
account most of the important vehicle physical factors.

The simulation developed includes a tow vehicle pulling a trailer over a flat surface
(two-dimensional motion). By proper formation of a solution algorithm, the mass of the
trailer can be set to zero, yielding single vehicle simulation. A computer solution is not
provided, but the equations of motion are derived and listed in an Appendix. The equations
are for the dual-vehicle kinematics and geometry only; external forces are included in
the equations but, with two exceptions, they are not modelled. For example, the equations
of aerodynamic forces are not presented. The two exceptions are tyre force models.
Equations for sliding friction and a nonlinear steering force model are provided.

Examples of computerized solutions are presented to illustrate the versatility of the
model and to compare its results to some Phase 4 simulation results.

2 Equations of motion

The coordinate system, assumptions and equations of motion are discussed in this section.
The final set of differential equations and an explanation of notation are provided in
Appendix A; their derivation is summarized here. The coordinate system used is an inertial
system fixed to the flat level plane surface. The vehicle system consists of a two vehicle,
C (car or cab) and a trailer T, as shown in Figure 1. In the remainder of this article, the



Figure 1 Diagram of the tow vehicle and trailer showing tyre force components,
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tow vehicle will be referred to as the car (or in some applications as a tractor). Direct
applications of Newton’s second law in component form provides six equations as follows:

4
mCiC = fCPX + Efi)g + FCX (1)
i=1
4
rncyc = fcpy + E fiy + Fcy (2)
i=1
. 4
Jcoc = rcpyfcpy + rcprcpx + E(rixfix + riyfiy) + Mc (3)
i=1
6
m|xt = ftpx + E fix + le (4)
i=$
. 6
my, = fypy + Ly + Fy ®
i=5 N
. 6
16 = r!pyflpy + fpyfipx + L (riefix + riyfiy) + M, ©)
i=35

The connection of the trailer and car at the pin, P, provides two constraint equations which
must be taken into account. The position components of the trailer mass centre can be
expressed in terms of the mass centre positions of the car as:

Xy = X¢ ~ Repsinfy, — Rysin 8, 10
Yo = Ye — Rycosfy, — Rycos by, ®)

Equations 1 to 6 represent a system with six degrees of freedom. The car trailer system
has only four degrees of freedom. Equations 7 and 8 are used to reduce equation 6 to
a set of four independent equations. The velocity and acceleration components X, ¥, ¥,
and ¥, are also needed and can be obtained by direct differentiation of equations 7 and 8.

By Newton’s third law, the pin force components fepx and fe,y on the car must be
equal and opposite to the pin forces fipox and f,, respectively, on the trailer. Addition of
equations 1 and 4 and equations 2 and 5 causes them to cancel. After adding these equations,
the acceleration %, is eliminated by using the second derivative of equation 7 and , is
eliminated by using the second derivative of equation 8. Equations Al and A2 in the
Appendix result from this procedure and are the first two of the final four system equations.

Equations 3 and 6 provide two more equations of motion but the pin force components
again must be eliminated. This can'be done in the following way. Equation 1 is solved
for f.,, and equation Al is used to eliminate .. Then fepy is obtained from equation 2
with §. eliminated using equation A2. These expressions for f,, and fepy are then
substituted into equation 3, which is then solved for 8. and listed in Appendix A as
equation A3. Similarly, f,, and foy (which are equal and oppos"ite in sign to f.,, and fepy)
are eliminated from equation 6. Solution of this equation for 8, results in equation A4.

Equations Al, A2, A3 and A4 provide a set of four second order differential equations
for the car—trailer system. If a single vehicle simulation is desired, m, is set to zero and
only the first three equations are integrated. Careful examination shows that they are not
uncoupled in the acceleration terms, as desired for integration. At least two approaches
are possible. Though coupled, equations A1 to A4 are linear and algebraic in the acceleration
terms. Each acceleration can be determined numerically using a linear equation routine
at each time step of the integration. An alternative is to simply use the immediate past
values for the angular acceleration terms still remaining on the right-hand sides of equations
Al to A4. Both approaches yield good results; ‘the latter approach is used for the results
presented.

3 Single vehicle dynamics

If the trailer mass is set to zero and only the first three equations of motion are integrated,
the model provides the dynamics of a single vehicle. Before the equations can be integrated,
the force system at the tyre ground interface must be specified. Some typical tyre models
are discussed briefly with examples provided to illustrate their utility.

3.1 Locked wheel skidding

One of the simplest tyre force models is Coulomb friction. A reasonably general model
consists of a friction force which varies linearly with speed. It is known that sliding frictional
forces are lower at high speeds than at lower speeds; see Reed and Keskin, 1987 and Brach,
1972. This is particularly evident on wet pavements. An appropriate model for a generalized
friction coefficient is:

p=p, — kv ()



where p, is the low speed sliding coefficient, v is the wheel velocity and k is a rate at
which the friction decreases with speed. Other, nonlinear, models can also be developed
as in Allen et al., 1988. The vertical force, F,, at each wheel is multiplied by u to give
the frictional force which directly opposes each wheel’s velocity. It is relatively easy to
program changes of g, and k in equation 9 to vary over the ground surface coordinates
x and y in order to simulate frictional variations such as patches of ice, local surface
contamination, etc. Each wheel’s sliding force is determined independently.

A subtle, but important, point must be mentioned relative to a Coulomb friction model
such as equation 9. Near the end of a skid, when some or all of the wheels™ speeds are
near zero, the above model is unstable during numerical integration. Sign changes in a
wheel’s velocity can occur at speeds near zero causing a frictional force which ‘speeds
up’ the vehicle; this is referred to in Allen e al., 1988. This can be avoided by requiring
the coefficient to smoothly approach zero below some small speed, say 0.5 m/sec.

Table 3 lists the physical parameters of an automobile and some other vehicles. Table
1 lists the results of three locked wheel skid simulations for the automobile from an initial
speed of 22.35 m/s (50 mph). This was done with the right wheels on a lower coefficient
surface than the left such as encountered on partially icy pavements or when one wheel
is off of the paved portion of a road. One case includes the effects of load transfer due
to a mass centre height of 0.5 m (see later). It is interesting to note that the coefficient
split from 0.75/0.55 to 0.75/0.35 causes an increase in stopping distance of about 20%
but an increase of over 200% in angular rotation. Figure 2 illustrates these results.

3.2 Modelling for steering control and vertical load transfer

The simplest tyre force model which gives good results in many applications is the linear
model,

F, = Coux (10)

Table 1 Single vehicle motion, initial speed 22.4 m/s (50 mph) locked wheel skid, dual
coefficient pavement

p=.7535 hc=0 p = 75/.55 he=0 w=.75.55 hc=05m

Time, X 1Y X Oc Xc 6
sec meters deg meters deg meters deg
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.60 12.44 ~1.29 12.26 -3.61 12.26 -3.64
1.20 22.94 -274C 22.23 -13.46 22.25 -13.66
1.80 31.53 -59.22 29.91 -27.73 29.97 ~28.51
2.40 38.12 -109.50 3533 —45.06 35.46 —47.02
3.00 4275 -17335 38.44 ~65.88 38.57 -69.86
3.60 4559  -224.02 39.34 -83.26 39.48 —-89.19
420 4682 25173

4.56 4704 26464

Table 2 Steer angle magnitudes for the 3.7 m, 3-sec lane change of Figure §

Magnitude of Steer Angle, deg

Linear Tire Nonlinear

Vehicle Speed Model Model
13.4 m/s (30 mph) 3.050 3.050
22.4 m/s (50 mph) 1.260 1.260
313 m/; (70 mph) 0.775 0.770
40.2 m/s (90 mph) 0.570 0.560

Table 3 Vehicle parameters or example simulations

AUTOMOBILE:
me = 1496kg Jo = 3004 kg-m?2
Li=L2 = 125m Li=ly = 155m
Wi=Wy = 0.76m W3=Wy4 = 0.76m
' Wep = 0.76m Lep = 283m
he = 052m Cq1=Co2 = 506 N/deg
C3=Cgq4 = 456 N/deg
(without trailer)
Ca3=Ca4 = 1118 N/deg
(with trailer)
AUTOMOBILE TRAILER:
m; = 2160kg J = 7759 kg-m?
o= —m
Ls=Lg = 043 m Ws=Wg¢ = 1.10mg
Wip = 110m Lp = 387Tm
hy = 076m Cos5=Cog = 1281 Nfdeg
TRUCK TRACTOR:
- mg = 7891kg Jo = 43493kg-m?
Li=lp = 1.74m L3=LZ = 2.07mg
Wl‘; 2 = 1.0lm W3=W4 = 10lm
cp = 101m Lep = 207
he = 061m P "
Co1=Can = 2236 N/de Co3=Cos = 7701 Nideg
TRUCK SEMITRAILER:
my = 23354 kg Jo = 159583 kg~m?
Ls=Lg = 428m Ws=Wg = 091m
Wip = 091m Lp = 545m
hy = 076 m Co5-Cas = 7453 Nfdeg

where F‘.is the force component transverse to the tyre heading, C, is a constant called
Fhe tyre side force coefficient and « is the side slip angle of the v;he;. The side slj a:il 1

is the angl.e between the wheel’s heading and its velocity vector. Many pub]icatiorl:s ef ‘:
on the subject of nonlinear modelling of tyre mechanics. Two of them are Bakker et a;s
1987 and Bergman, 1977. Both contain equations which can be programmed to rovid' ,
tyre forces and moments which agree quite well with experimental results, yet wl‘:ich ar:



Figure 2 Locked wheel skid over a dual coefficient of friction surface; initial speed is
22.4 m/sec (S0 mph). Left/right coefficients are 0.75/0.55 for the top figure and
0.75/0.35 for the bottom

PR < )
= .
11818 (miE e ¥ %—%

Figure 3 Nonlinear tyre force model (Bakker et af., 1987); each curve has the same
coefficient, C,, but saturates at levels dependent upon the normal force, F,
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not unduly complicated. The following set of equations is a simplification of the model
presented by Bakker, Nyborg and Pacejka, 1987:
A = (-0.0221F,+1.01)F, B
D = C,/(1.30 A) E
F,

—0.354F,+0.707
(1—-B)a+(B/D) atn (aD)
Asin(1.30tan!|D E|) (1)

F, is the normai force in Newtons, C, is the initial slope of the tyre side force in units
of N/deg and « is the side slip angle in degrees. Refer to Bakker ez al., 1987 for the form
and source of the constants. The characteristics of this model are shown in Figure 3. In

Figure 4 Example of a steering angle which simulates a lane change or avoidance
manoeuvre; it is composed of offset sine functions
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the remainder of this paper, the tyre model given by equation 11 is referred to as the
nonlinear tyre model.

Equation 11 for the tyre side force contains the effect of varying normal force F,.
The equations of motion derived earlier do not contain the effects of a flexible suspension
system. Consequently, the normal forces take on only their static values. It is possible
to approximate dynamic load transfer by using lateral and fore-and-aft moments created
by the respective acceleration components acting through the vehicles’ centres of gravity
at heights h_ and h,. (The equations are relatively simple and are not presented here.) This
causes F; to vary about the static value for each wheel during wrning, accelerating and
braking. Through equation 11, this causes the lateral tyre forces to vary dynamically
between the load curves illustrated in Figure 3.

Dynamic normal force variations from wheel to wheel can al§o affect locked wheel
skidding when the friction coefficient is not constant over the ground surface. Table 1
illustrates this effect; it is small but not insignificant. No experimental data appear to be
available for comparisons with the model results.

A lane change manoeuvre is used to illustrate the tyre force model (equation 11) and
the load transfer approximation for a vehicle under steering control. Figure 4 shows a
convenient representation of a front wheel steer angle composed of offset segments of
sine functions. It will produce a lateral position change for a forward moving vehicle.
Table 2 shows the magnitude of the steer angle of Figure 4 for the car in Table 3, for
a lane change at four forward speeds. In all cases, a lateral position change of 3.66m
(12 ft) takes place in 3 seconds. Note that the linear and nonlinear tyre models (and
corresponding absence and inclusion of load transfer) produced identical results. This
implies that the nonlinear effects and load transfer are not significant for this specific
example. The vehicle’s yaw velocity is plotted in Figure 5 for the four speeds simulated.



Figure 5 Yaw angular velocity for an automobile undergoing a lane change at four
different speeds for the steer angle of Figure 4
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4 Articulated vehicle dynamics

The full model composed of a tow vehicle (car or cab) and trailer will be discussed and
illustrated in this section. Two sample cases are presented. The first is that of a car pulling
a recreational trailer and is used to illustrate that motion can be unstable at high speeds.
The second is a simulation of a tractor semi-trailer and a comparison of the simulation
with the Phase 4 simulation.

4.1 Carftrailer stability

At sufficiently high speeds, the lateral motion of a car and trailer can become unstable.
A single, sample configuration of a car and recreational trailer is used to illustrate the
instability and how different tyre model combinations affect the motion. It is assumed that
a load equalizing hitch is used such that the static, vertical front wheel loads are the same
as the car of Table 3 without the trailer. The car’s rear wheel static vertical loads increase
due to the trailer; in addition the rear tyre side force coefficient is increased significantly.*

For this example, the car and trailer initially are moving straight ahead at 26.8 m/s
(60 mph) and then at 54.6 m/s (120 mph). A steer angle with a maximum of 0.21 degrees
over a two-second interval as illustrated in Figure 4 is given to the car’s front wheels.
Figure 6 shows the yaw velocity of the trailer and Figure 7 shows the relative yaw angle
between the car and trailer. At the lower speed, the vehicle motions are stable and virtually
identical for both linear and nonlinear tyre models. At the higher speed, the motion is
unstable because the yaw motion diverges after the steering manoeuvre is completed.
Differences in the motion for the different tyre models do occur; they appear to become
significant for relative yaw angles greater than about 5 degrees.

Examination of Figure 3 shows that the nonlinear tyfe model has a characteristic

*The physical characteristics of the car and recreational trailer simulated are not intentionally
representative of any specific vehicles.

Figure 6 Trailer yaw velocity for an automobile trailer combination undergoing a two-
second avoidance manoeuvre:

nonlinear tyre model, load transfer included

nonlinear tyre model, no load transfer (h=0)

linear tyre model, no load transfer

nonlinear tyre model, no load transfer
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Figure 7 Relative angle between the automobile and trailer for a two-second avoidance
manoeuvre:
A nonlinear tyre model, load transfer included
B nonlinear tyre model, no load transfer (h=0)
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limiting value to the side force whereas the side force in the linear model continues to
increase with side slip angle. Large side forces can exceed the frictional limits between
the tyre and pavement and lead to sliding. This happened to the trailer wheels with the
linear tyre model (for a friction coefficient of 1.0) and is evident in Figure 6 near t=9.5 sec.



4.2 Tractor semi-trailer, simulation comparison

Several manoeuvres and loading condition combinations were simulated with the Phase
4 computer program as part of a comprehensive truck modelling research program; refer
to Hayes, 1980. One combination is used here for comparison of the equations. The front
wheel steering angle corresponding to a lane change manoeuvre is illustrated in Figure
8. The digitized values of steer angle were interpolated quadratically for use in the
simulation. The pertinent vehicle data is taken from Hayes, 1980 and is listed in Table
3. For this particular test, the tractor semitrailer was in a loaded condition manoeuvring
over a flat high friction surface.

Four aspects of the vehicles’ response are compared in Figures 9 to 12. In each case,
the results are shown for the linear tyre model (LTM) and nonlinear tyre model (NLTM).
The response using the linear tyre model matches very closely while the nonlinear tyre
model does not do as well. No attempt was made to adjust any of the NLTM parameters
to bring it into closer agreement.

One adjustment was made to the vehicles’ physical parameters in this simulation. Since
the simulation uses a rigid suspension system with a simple inertial load transfer, the heights
of the mass centres had to be modified. It was decided to use a percentage of the mass
centre height of the tractor’s and semitrailer’s sprung masses. With full heights used for
h, and h,, the vertical tyre forces for the tractor wheels were close to the Phase 4 values
but the computer results showed the right rear trailer wheel raising from the road surface
(negative force) near the 4 to 5 sec time interval (see Figure 12). Values of 60% of the
tractor’s sprung mass height for h. and 40% of the trailer’s for h, gave the results shown
in the Figures.

In general, the results of both simulations match quite well, perhaps surprisingly well
considering the simplicity of the model and the severity of the manoeuvre. At a speed

Figure 8 Experimentally measured front wheel steering angle (Hayes. 1980)
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Figure 9 Comparison of the simulation model with sirnulation of Phase 4 of Hayes,
1980 LTM is with a linear tyre model and NLTM is for the non-linear tyre model
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Figure 10 Comparison of the simulation model with simulation of Phase 4 of Hayes,
1980: LTM is with a linear tyre model and NLTM is for the non-linear tyre model
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of 108 km/h (67 mpf}) a steering angle change of —2.27 deg to +1.57 degrees in an interval
of about 1 second is very severe for a vehicle of this type and weight.
5 Computer hardware and software

The si'mulation results were from a computer program written in the Microsoft QuickBASIC
compiled language. Separate subroutines were written to handle the following:
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Figure 11 Comparison of the simulation model with simulation of Phase 4 of Hayes,
1980; LTM is with a linear tyre model and NLTM is for the non-linear tyre model
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Figure 12 Comparison of the simulation model with simulation of Phase 4 of Hayes,
1980; LTM is with a linear tyre model and NLTM is with the non-linear tyre model.
Simulated centre of gravity heights are at 60% and 40% of sprung mass heights of
tractor and semitrailer, respectively.
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Tyre—ground force calculation, including steering or locked wheel skidding.
Static, vertical wheel load calculation; hitch load equalization when necessary.
Inertial load transfer, side to side and fore to aft.

Numerical integration of the differential equations.

Output to monitor, printer and/or diskette file.

Quadratic interpolation for tabular steering inputs.

The Fillimerical integration technique used is the well known fourth-order Runge-Kutta-
Gill method. The computer uses the MS/DOS operating system. It has a processor speed
of 25 MHz and used a numeric coprocessor chip. This computer and language combination
provides a compilation time of about 10 seconds and a run time (tractor semitrailer
simulation) of about 60 seconds. All calculations were single precision; the integration
interval was 0.01 sec.

Appendix A Notation and equations of motion

The four differential equations of motion for a tow vehicle pulling a trailer are contained
in this Appendix. Equations defining intermediate variables are presented along with a
list of symbols. All of the variables are illustrated in Figure 1. The equations of motion are:

(me +my) X =—my (ch écp cos O¢p
+Rep éczp sin 6cp+ Ryp Gt cos Op
+Ryp éf sin Blp)
6
+ 3 fix + Fex + Fix (Al)
i=1
(m¢ +my) Yo = -my (—ch 8¢ sin Ocp
+Rep 9% cos 8cp ~ Ryp 91 sin O¢p

+Ryp é% cos Oxp)

6\
+ 'zlfiy + Fcy +Fyy (A2)
1=

m,
I:Jc + %iﬂ—t Rep (rcpx cos O¢p
. A 4
— Tcpy Sin ecp)] 6 = _El(rix fix + Ty fiy)

. i=

m 6 4
+ Icpx [mc + mp vzlfix - i:z‘,lfix]

1=

6 4
+ Tepy (Ec—mf-a iglfiy - izlfiy)
—rcpyﬁ (ch ég cos B¢p
- Ryp é, sin 6yp — Ryp 6% cos Glp)
‘ICP"-mL:%@m—, (ch Gz sin O¢p

+ Ryp O cos B¢y + Ryp é% sin e.p) (A3)

m .
I:Jl + %X%; Rip (r.py sin O¢p



. 6
— Tpx COS elp)] 6 = ii[.s(fix fix + riy fiy)
4 6
+ Trpx (iglfix - m_cr%ﬁ iglfi x)
4 6
+ Iipy (.Z fiy - —_E_mc +m fiy)
i=1 i=1
+ Itpy —nw—mc + my (—ch O sin 8¢p
+Rep éz cos O¢p + Ryp é% cos etp)

+ Ipx f*’ﬂm_t (ch OC cos ecp

+ Rep éz sin O¢p + Ryp é":‘ sin e.p) (Ad)

Variables used above include:

Rep = [L2 + (W3 - Wep)?2]12 A3)
Rip= [, + (Wip— Ws)H12 @)
Ocp = (/2) — Bc - tan"! [(W3 - Wep)/Lep) (A7)
Brp = (1/2) — O — tan”! [(Wip — Ws)/Lyp] (AB)
typx = —Lyp sin 6~ (Wip — Ws) cos.el (AY)
Tpy = Lip cos 8y — (Wip — Ws) sin 6 (A10)
Tepx = Lep sin 8¢ + (W3 — Wep) cos Oc (A11)
Tepy = —Lep €0s 8 + (W3 — Wep) cos 8¢ (A12)
NOTATION
Fex, Fey External force components on car (tow vehicle)
Fix, Fiy External force components on trailer
F, Normal force between a wheel and the ground
fix» fiy Components of the tangential force between the ith tire and the ground
he, hy ‘Heights of car and trailer centers of gravity, respectively
Jo. It Mass moment of inertia of car (tow vehicle) and trailer, respectively, about
their centroidal yaw axis
Lep. Lip Longitudinal distance from vehicle centroidal axis to pin in each vehicle,
respectively

L; Longitudinal distance from centroidal axes to the ith wheel

mg, my Mass of car (tow vehicle) and trailer respectively

Tepxs Tepy Moment arms from tow vehicle centroidal axes to force components fcpx and
fcpy, respectively

Tipx Ttpy Moment arms from trailer centroidal axes to force components fipx and fipy,
respectively

Tix, Ty Moment arms from vehicle centroidal axes to tire/ground force components fix

and fiy, respectively

Wep, Wip Transverse distance from wheel 3 and wheel 5 in each vehicle, respectively, to

the pin
X,y Ground based inertial coordinates
8 Front wheel steer angle
i Corresponds to a wheel number; from driver's perspective, left front (1), right
¥ front (2), left rear (3), right rear (4), left trailer (5) and right trailer (6)
c cab or car (tow vehicle)
t trailer
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