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The nonlinear response of an automotive engine on
mounts is investigated. The engine and mount system
is represented by a planar three degree of freedom
system consisting of a rigid body connected to ground
through flexible supports. The nonlinear response of
this three degree of freedom system is established using
the method of multiple scales. A representative frequency
response of the system is presented using parameter
values associated with an in-line four cylinder engine
running at hot idle. This frequency response shows that
when 1:1 and 2:1 internal resonances exist between the
linear natural frequencies of the system, multiple steady
state solutions can exist. This nonlinear system response
occurs due to the system geometry and therefore
nonlinear force—deflection characteristics of the flexible
supports are not required. Additionally, the isolation
characteristics of the system are established based on
the system response. The efficient transfer of energy
from one mode to another is exploited to enhance the
isolation performance of the system.
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1. Introduction

This paper presents the results of an analytical
investigation into the harmonic response and vibration
isolation characteristics of a three degree of freedom
rigid body system. There are two main components
to the work. The first deals with the complex type of
responses that can occur in what might seem to be a
relatively simple rigid body system. The second deals
with the issue of defining a meaningful measure of
the performance of an isolator when multiple degrees
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of freedom are present. Since the motivation for the
work was to better understand the planar dynamic
behaviour of an automotive engine on flexible mounts,
reference is made throughout to such a physical system.
Moreover, parameter values in keeping with an in-
line four cylinder engine are used in the numerical
examples that are given.

The system is modelled with supports possessing
linear force displacement characteristics, and the
equations of motion for the system are derived allowing
for general motion of the rigid body, i.e., no small
motion assumption is made. This leads to nonlinear
equations of motion. An approximate solution to these
equations of motion is found using the method of
multiple scales, see, for example, Nayfeh and Mook
[1]. A representative frequency response of the system
for parameter values associated with an in-line four
cylinder engine, shows that when 1:1 and 2:1 internal
resonances exist between the linear natural frequencies
of the system, multiple steady state solutions can
exist. In addition, the nonlinear response may be
accompanied by a transfer of energy between modes
that can be utilized to improve the isolation perform-
ance of the rigid body system. It should be stressed
that such a transfer of energy does not necessitate the
presence of large motions. It is the existence of the
internal tuning condition that causes an exceptionally
strong coupling between the modes.

Past studies in this area include the work of
Henry and Tobias [2,3]. They examined the unforced
nonlinear response of a two degree of freedom, rigid
body, isolation system. In particular, the stability of
modes and modal coupling of this system were
investigated. Grootenhuis and Ewins [4] investigated
the unforced response of a six degree of freedom rigid
body system on resilient supports. Specifically, the
change in the linear natural frequencies of the system
as a function of the location of the centre of gravity
was examined. Efstathiades and Williams [5] studied
the coupled response of two of the six degrees of
freedom of a rigid body system with supports at four
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corners. These corner supports were modelled using
symmetric cubic force—displacement characteristics.
Internal resonances of the system were investigated
using the method of harmonic balance. The study
showed that through the presence of the nonlinear
characteristics of the corner supports and internal
resonances, otherwise normal modes of vibration couid
become coupled.

It is hoped that the results of this study will extend
the tools commonly used by automotive engineers to
establish engine mount placement, viz., torque axis
theory, natural frequency placement, and elastic axis
theory. A comprehensive review of these three analysis
techniques is given in Brach [6].

2. Physical System
2.1 System Description

The system analysed in this paper is based on the
geometry of a planar, three degree of freedom
rigid body mounted on resilient supports with linear
force—deflection characteristics. A schematic of the
model is shown in Fig. 1. The damping is assumed to
be light and is simply added to each modal coordinate
after the equations have been derived. Each of the
supports is characterized by two orthogonal stiffness
values, one for the lateral stiffness and one for the
axial stiffness.

The dimensions, physical parameters, and operating
conditions associated with the rigid body utilized in
the analysis correspond closely to a four-cylinder
automotive engine at hot idle. The support character-
istics are representative of actual elastomeric engine
mounts. The geometry of the system analysed in this
paper is symmetric as shown in Fig. 2. This symmetry
is not typical of an actual engine but is introduced to
make the problem more tractable and to facilitate the
interpretation of the system response.

ks

Fig. 1. Geometry of the rigid body system.

Fig. 2. Physical dimensions of the rigid body.

2.2 Equations of Motion

Lagrange’s equations are used to derive the equations
of motion for this rigid body system. The expression
for the kinetic energy of the system can be written
directly. However, due to the complexity of the
expression for the deflection of each spring, the
expression for the potential energy of the system is
complex. The computer program Mathematica by
Wolfram [7] is used to obtain a Taylor series expansion
that is written about the state equilibrium position of the
system. The number of terms required for satisfactory
performance of the series has been established by
Brach [6]. Use of the series renders the final equations
of motion for the system in a form such that the
nonlinear terms are expressed in polynomial form.
After several simplifications are made to the actual
equations of motion of the system, the resulting

equations analysed for the system response are:
X + ZE;L,w]Xl + w2 X,
tea XoXs + €0 X1 X5 + eaz X3
+ea,X 1 X3 + easXi + eacX1 X3 = fi(t) (1)
Xz + 26#@.‘!’2}(2 (2)
+ a2 X, + €0 X\ X5 + €z X3
+eaoX; X3 + €a,0X3 Xz
+eay XoX3 = fo(1)
Xs + 25#30)3X3 + @3X;3 (3)
+ e X3 + €a;3X 1 X5
+ e X3X5 + € s XiX;5
+ ea;6X3 = f3(1)

The o, the coefficients of the nonlinear terms, are
complex functions of the geometry of the system. In
Section 4.2 actual numerical values are given for a
particular case. Damping associated with each mode
has been introduced into the equations and is rep-
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resented by the w;. The dimensionless parameter € has
been introduced to provide appropriate ordering of
the damping and nonlinear terms required for the
subsequent application of the perturbation solution
technique.

3. Approximate Solution Technique

Traditional solution techniques cannot be used to find
a closed-form solution to Egs (1), (2), and (3).
Therefore an approximate solution to the equations is
sought with the use of the perturbation technique
known as the method of multiple time scales as
presented by Nayfeh and Mook [1]- The next section
presents a brief description of the method and the
following sections apply the method to obtain an
approximate solution to the equations of motion of
this system.

3.1 The Method of Muitiple Scales

The fundamental notion of the method of multiple
scales is to consider series expansions representing the
solution to differential equations, such as Eqs D), (2),
and (3) above, as a function of multiple independent
variables, or scales, instead of as a function of a single
variable. In the case of the method of multiple scales
the variable treated this way is time, . This transition
to multiple independent variables is accomplished by
writing time in the following manner:

T,,=e"tf0r0<e<1andn=0,1,2,... (4)

where ¢ is the independent time variable, the T, are
the new independent time variables, and e is an
ordering parameter. It transpires that the time T, will
capture the fast dynamics while ignoring any slowly
varying changes. The time T, will capture more slowly
varying changes, for example a drift in amplitude.

Following the usual procedure of the method of
multiple scales and neglecting terms of O(€?), the
solutions to Eqgs (1), (2), and (3) are expressed in the
form:

X(t;€) = x0(To, T1) + ex;1(To,T;) where (5)
To=tand T, = etforj= 1,2,3
The derivatives of these expressions with respect to

time ¢ become partial derivatives with respect to the
different time scales. Accordingly, they become:

d(X;

Ldij—) = (Do + €D1)(X)),

(X

) — (D + 2DuD1)(X) (&)
forj=1,2,3

where

(X,
Di(X;) = (TTJT) and (7)
2 X,
DU(X)) =%%J—)forj= 1,2,3,k=0,1
k

The forcing terms in Egs (1), (2), and (3) can be
reordered such that f{1) = ¢f,(1). Physically this means
that the forcing is relatively small, which is valid since
it arises from small unbalances in the engine. Utilizing
this reordering and substituting the results of Egs (5).
(6), and (7) into Egs (1), (2), and (3), gives:

Dixjo + wfxjp =10 (8)
D3xy; + wixyy = — 2DoDixs0

— 2py@,DoX10

— QXz0X30 — G2X10X30

— asxdo

— X 0%30 — @s¥io
— agriodo + i
D3xyy+ @hxy = — 2DoD1x2o
— 220, Dox20 %)
— X 10X30 — AsX30
~ apX10¥%30
= ayo¥To%20
— a0tk 1 fa
D%xs, + 03xs; = — 2DoD1x30 = 2p3wsDo¥so
~— a2Xo T A3X10¥20
— ayx30X30 — @1s¥ioX30
~ a1eX30 + fs
The solution to Egs (8) can be written in the form:
xj0 = Aj(T1)e™™ +cc j=1,2,3 (10)
where the use of cc denotes the complex conjugate of
the preceding terms. The A; are complex functions of
T, and are determined later in the analysis.
Substituting Eqs (10) into Egs (9), and simplifying
leads to:
D3xy; + a?x;, = — 2A%iwei170
— 2 Aiwiei®rTo
— ay(AzAseit@2 ™ @0To + A,Aeiter — @27o)
~ ay(A,Aseir @3)To + A Al «DTo)
— as(A3e* 270 + 3AZA,¢1“2T0)
— (A AR 2D To
+ 2A,A,A e To

+ ZIA%ei(— wp + 2w7)Tp)

(1)
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— as(Ale3eiTo

+ 3A%A4,ei1Tv)

_ Ofé(A 1A%e““’1+ 2“’3)T()
+ 2A4,AsA5ei1 70

+ ZIA%ei(— w;+ 2w3)T0)

+f1(t) + cc

D3y + @hxa; = — 2A5i 06" 270

— 2upAiwiei 270

— ay(AAsei@r T 9o + A Azelles — @) To)

— ag(AedioaTo + 3A3A,¢12T0)

— ap( A, A%eiter 29070 + 2A 1A, A e To

+ A, Adei(— @1+ 202)T0)

— g AFA * @DTo + DA, A, Ageie2T0

+ ATALei 201 ~ @) To) — a;,(AzA%eiwr * 20 To
+ 24,A3A58127T0

+ A,AZei— w2+ 200T0) + fo(£) + cc

(12)

Dixs; + wixs; = —2A5iwse'370

— 2psAsieRe’aTo = ana(ATeH T

+ AA)) — ap3(A Al T @2 To

+ A A6l — @) — o14(A3A 561292+ @3)To
+ 2A4,A,A5e3T0 + A3A5ei?w2 ~ «3)T0)

- als(A%A3ei(2w1 + @7 + 24, A, Ase"370

+ A%Zsei(zml — @3)Tp) — a(Ade?3To
+3A3A5e13T0) + f5(2) + cc

where A; denotes the complex conjugate of A;. Since
we require the solutions to be uniformly valid in time*,
any term on the right hand side of Egs (11), (12),
and (13) that would cause x;; t0 grow unbounded,
must be neglected. Such terms are called secular
producing and will be of the form ( )elwToforj=1,
2, and 3 in Egs (11), (12), (13) respectively. In this
way the expressions for the A; are determined.

(13)

3.2 Possible Secular Producing Terms

Clearly there are a vast number of secular producing
terms depending on relationships between w;, @, @s
and the frequencies of the external forces. In the next
section, these many possibilities are limited to those
which have physical significance for an in-line four
cylinder engine at hot idle.

* For the notation used here, the approximation for X(t:e) of
Eq. (5) should be such that small terms remain small for all time.
That is, if x,, is the principal term in the approximation and x;; is
the correction 1o it, we want |e x,,| < |x,o| for all time. As presented
in Kahn [8], when this is accomplished, the resulting approximation
is said to be uniformly valid in time.

4. System Response

In this section. the frequency response of the system
is presented. We first discuss the source of the forcing
terms. their likely form, and then identify the resulting
secular producing terms in Eqgs (11). (12), and (13).
An example problem that considers forcing in the
vertical and rotational directions is then presented.

4.1 Source of Forcing Terms

When one discusses the internal forces generated in
an engine, it is typical to represent the horizontal,
torsional, and vertical components of force in the form

£(£) = fn cos(€) + fiz cos(2(k)
+ ...+ fincos(nu)forj=1,2,3

respectively, and where € is the engine rotational
speed. The integer n describes the order of the
unbalance. The case of n = 1 is called the first order
or primary unbalance force. The case of n=21s
similarly called the second order or secondary unbal-
ance. Ideally, a perfectly balanced engine would have
all f;, equal to zero at all engine speeds. For an in-
line four cylinder engine, all the first order forces and
moments are theoretically balanced while certain
second order forces and moments are unbalanced, as
presented in Den Hartog [9]. However, it has been
found that in actual engines the first order moments
in the X, direction (torsional), do not completely
balance, Whitekus [10]. For the X direction (vertical),
unbalance appears at the second order. Table 1 depicts
these results in tabular form.

Typically, the six rigid body linear natural frequencies
of an automotive engine lie between 5 Hz and 25 Hz.
It is not unreasonable to expect that there could be
nearly simple integer relationships between several of
the linear natural frequencies. Several papers which
list the six linear natural frequencies for actual engines
indicate that such relationships do occur in actual
engines. See Johnson and Subhedar [11], Geck and
Patton [12] and Spiekerman, ef al. [13] Guided by
these works and the information in Table 1, the
relationships between the linear natural frequencies
chosen for this study are the following:

Table 1. Summary of forcing conditions.

1st Order oscil- 2nd Order oscil-
lation at engine lation at 2X

speed engine speed
Unbalanced horizontal force f;, =0 fia=0
(X, direction)
Unbalanced vertical force fa=0 fi2#0
(X, direction)
Unbalanced moment fa#F0 fa=0

(X, direction)
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w0 = Wy, 2w, =~ wyand 0 = o, (14)
with

fi(e) =0, (15a)

fa(£) = for cos(€2) (15b)

(1) = f32 cos(20) (16)

The second order component of f» is neglected as
it is typically much smaller than the first order
component.

4.2 System Parameter Values

Prior to presenting the frequency response plots,
discussion of the parameter values to be used in the
numerical analysis is needed. The physical dimensions
of the rigid body are representative of the dimensions
of an engine viewed along the crankshaft axis. The
system parameters as shown in Figs 1 and 2 are:

Mass m: 219.4 kg

Inertia I:  14.155 kg m?
Height 2B: 0.842 m
Width 2A: 0.254 m

ky: 1,732,312.8 N/m
ko 433,078.2 N/m
kst 433,078.2 N/m
ky: 1,732,312.8 N/m

These parameter values are used to obtain the
numerical coefficients of the terms of the Taylor series
approximation of the potential energy about the static
equilibrium point. These coefficients are then divided
appropriately by either m or Ig producing the a’s
given in Egs (1), (2), and (3). The resulting numerical
values of the a’s are:

a, = —4915.45 as = —58,055.75
a, = 154,817.68 ap = —474,311.20
a; = —1248.52 a;; = 180,387.67

a, = —30,601.07 a;, = 77,408.84

as = 758,908.77 a3 = —4915.45

a = —1,897,270.97 a;, = 11,638.05

a; = —76,188.63 a5 = —1,897,270.97
ag = —144.52 a6 = 189,727.10

The values of the damping coefficients ¢, ¢, and
¢, were chosen such that the viscous damping ratios
of the linearized system equal 0.01 for all modes, i.e.
ew; in Egs (1), (2), and (3) are such that ey; = 0.01.

The forcing terms were chosen to be of the same
order of magnitude as the force found in production
engines. For a nominal rotational engine speed of
600 rpm, the values used are:

ef, = 51 cos(£) = 30 cos(20mt) N m
efs = €f, cos(2€t) = 500 cos(40mt) N

The parameter € introduced in Eqs (1), (2), and
(3) must be specified to enable the numerical evaluation
of the results of the multiple scales analysis of the

rigid body system. The value of € used here is 0.01.
The ramifications of the choice of the value of € are
discussed in Kahn [8].

4.3 Example: Combined Torsional and
Vertical Unbalanced Forces

The considerations of the previous sections regarding
the physical system are used in this section to determine
the secular producing terms in Egs (11), (12), and
(13). Using the relationships given in Egs (15) and
(16), forcing in both the X and X; coordinate
directions is present. Hence we have respectively,
Fo(t) = for cos(8), and F5(1) = fz2 cos(2).

The relationships between the natural frequencies,
given in Eq. (14), and the forcing frequency are now
used to determine the secular conditions. Consistent
with the method of multiple scales, detuning parameters
are introduced. These detuning parameters are rep-
resented by o,,’s such that:

Q=w,+ €0 (17)
and
(18)

Using these relationships, the secular terms inEqgs (11).
(12), and (13) are eliminated by letting:

Wy = Wy — €00, W3 = 209; — €03

—2A%iw, — 2 A i} — @ A,Azei2” DT
- a221A3e_i“'3T1 “_3C¥3A%Aze—io-27‘l

— ay(2A1A,4, + A, A3e"22T1) — 3asATA,
—2a4A1A34;=0

(19)

~2A%iw, — 2ipAnied — ayA Ase’ 2 DT
- g_agA%Az - ag(ZAlAzAzgi"ZTO _
+ AlA%e‘i"le) - a10(2A1A1A2 + A%A262i02T1)

- 2a11A2A3Z3 + % eicrlTl = 0

(20)

—2A%w; — 2p3Asi03 — apATel
— 03341426173 7 7P = 2014424045
— 205414145 — 3ay6A4345

+ _352_ ei(2oy — 203 + 0T} = ()

(21)

These equations are then put in autonomous form
and the real and imaginary parts are separated from
each other giving the following six equations governing
the amplitude modulations in time T;:

ay

U = up(oy — 02) = Pty — (usue — Uglis)

4(01
as
4(.01

(22)

3&3
(urli — UolUs) = Sw (U3uy + ul)
i

(83
-~ ga% (uaU3 + 3upui + 2uyUsiy)
1

3(15 [273
- —Sw; (uius, + u3) — dw (uzu?g + uyuz)
1
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ué=—u1(0'1—0'2)—ulw1u2
+—ai(uu +uu)+—q2—(uu + Uslig)
4(1)1 345 446 40)1 145 246

Sas
8(!)1

&2 2
+ —% (Buyud + uui + 2uxusUs)
80)1

+ o (13 + usu3) (23)

3(15 Qe
+ 255 (13 + wud) + — (Ut + uy i
8(1)1( 1 1 2) 4(01( 145 1 6)

! a7
Uz = Uy — Mooz — 74—0;2 (urtte — tais)
3o
- g_w's; (13us + ud)
(07
— 2 (upu} + 3uu3 + QU UslUs) (24)
8w,

[41
Sia A (u%u4 + 3u%u4 + 2141“2“3)
8w,

Uy = —u30y — powaity + 7 (Uglis + Uslis)
3
#3283 4 )
a
+ %9_ (Buyud + ugu3 + 2uxuizus) (25)
2

«
+ =29 (3uBus + udus + 2ulous)
8w,

for

20,

ot 8!
— 1% (usu + usuf) -
4w,

us = ug(20, — 205 + 03) — pawslds

[(23¥3 13
- Z_Z—la); Uyl — 4—0)3 (s + Uslis) (26)
=8y + udug) — o (Wl + U3Ue)
§w3 4w,
Q16
- 8(;3 (u%ut‘) + u%)
o
u'6 = —u5(20'1 - 20'2 + 0'3) — Hawslg + _4(:2‘
3
Q43 Q14
w2 — u3) + —= (Ugls — Usldy) + 27
( 1 2) 40.)3( 143 2 4) 4603 ( )
Qys 3ass
(uBus + ujus) + v (ufus + udus) + .

32

2(1)3

These equations are frequently referred to as reduced
equations or as slowly varying equations. The relation-
ship between the u; of the reduced equations and the
X, of the equations of motion is:

X, (1) = x10(t) = Vui + u3 cos(Qt + v1) (28)

Uy
where y; = tan™! ”

(ud + usug) —

Xo(1) = x20(1) = Vi3 + uz cos(Q + 72) (29)

Uy
where y» = tan™ ™

Xi(1) = x39(1) = Vu3 + ug cos(2{ + ¥s) (30)

where y; = tan™ Yo
Us
The utility of Eqs (22)—(27) extends beyond the
fact that they govern the amplitude modulations of
the X; in time T). Setting the time derivatives of the
equations, i.e. the left hand sides, equal to zero
produces six nonlinear algebraic equations. The sol-
utions of these equations are the steady state amplitudes
of the X;. These algebraic equations can be solved for
ranges of o, to produce frequency response plots.

4.3.1 Stability Issues

Prior to using these equations to produce response
plots, the stability of the solutions is discussed.
Consider Egs (22)—(27) written in vector notation, as
follows:

x =f(x) (31)
Into this equation can be substituted a vector x; with:
X; = Xgs T Xp (32)

where x.. is the actual steady state solution and X, is
a small perturbation of the actual steady state solution.
The notion of this exercise is that if x, — 0 as t — ,
then the solution x, is considered stable.

Next, consider a Taylor series expansion in one
variable of f{x, + X,) about x:

e+ %) = f03) {a‘ﬁ,i“)] x,+0(5)  (33)

Note that {x,) = 0 by definition and also that

(X + Xp)' = Xp = f(Xes + Xp) (34)
Hence Eq. (33) can be written as follows:
X =[ o :\xp (35)

Equation (35) is a set of autonomous linear ordinary
differential equations with constant coefficients. It can
be shown, see Derrick and Grossman [14], that the
eigenvalues of the coefficient matrix given in Eq. (35)
denote the stability of the system for x = X This
coefficient matrix is referred to as the Jacobian matrix.
This method of examining the eigenvalues of the
Jacobian matrix is used to establish the stality of the
solutions of Eqs (22)-(27).

4.3.2 Amplitude Frequency Plots

The six algebraic equations governing the steady state
amplitudes for the system are given by Egs (22)—(27)
with the terms containing the time derivatives set
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Fig. 3. Frequency response for X, (horizontal response). Solid line ~ stable solution; dotted line ~ unstable solution.

equal to zero. A representative set of response plots
are shown in Figs 3, 4, and 5. For this example it is
assumed that there is perfect tuning between the
natural frequencies, i.e., w; = @2 and 2w, = w; and
hence the detuning parameters o and o3, as defined
in Eq. (18), are both zero. The remaining detuning

parameter, g, measures the nearness of the forcing
frequency, Q, to o, (see Eq. (17)). 1t should be
recalled that in this example, forcing is applied only
in the X, and X directions (rotational and vertical,
respectively). The associated forcing frequencies are
Q and 2Q, respectively. Hence, from a linear system

0.025

0.02

0.015

0.01

0.005

0

-400 -300 -200 -100

0 100 200 300 400

g,

Fig. 4. Frequency response for X, (rotational response). Solid line — stable solution; dotted line — unstable solution.
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Fig. 5. Frequency response for X (vertical response). Solid line - stable solution; dotted line — unstable solution.

standpoint, one would expect to see resonant responses
of the X, and X; coordinates only and for the X,
coordinate to remain small.

Figure 3 shows that this is not the case. Here it is seen
that over the range —200 < oy = 230, the response of
this coordinate is both resonant and multi-valued. In
the regions —200 < oy < —160 and 150 < oy = 240
the response is triple valued. The responses of coordi-
nates X, and X3, shown in Figs 4 and 5 respectively,
also exhibit similar features. Due to the geometry of
the system and the resulting nonlinearities, there is a
transfer of energy between the modes. Of particular
benefit to the automotive industry is the reduction of
the vertical motion (X;) over a wide range of the
forcing frequency. Of course there is an associated
increase in the horizontal (unforced X; coordinate)
but typically this is a much more acceptable motion
to have in automotive applications.

For this case, verification of the response magnitudes
for each of the three system coordinates was made.
The verification is made through comparison with
the response amplitudes predicted through numerical
integration of Egs (1), (2), and (3) to those predicted
by the steady state values obtained from the reduced
equations. The comparisons were made only for
selected values of o;: o, = = 180, oy = 200, and
o, = 0. These amplitudes are indicated in Figs 3, 4,
and 5 by the diamond mark. This comparison shows
that the approximate solution technique is accurate,
at least for the limited cases tested.

It is seen that a large reduction in amplitude is
realized in the X5 coordinate response for the range

—120 < oy < 150. It is in this range that the nonlinear
system produces a small response compared to the
linear response. This difference in amplitudes can be
utilized to enhance the isolation response of the
system. It is this fact that is investigated in Section 5.

5. lsolation Characteristics

With the frequency response of the system established,
its isolation characteristics can be investigated. An
overview of vibration isolation metrics is presented in
the first section. In the second section, the isolation
performance of the rigid body system is analysed.

5.1 Discussion of Vibration Isolation Metrics

Various metrics have been applied to the evaluation
of vibration isolation systems. The three measures
prevalent in literature are transmissibility, isolation
effectiveness, and power transmission. It is the purpose
here to briefly consider each of these measures and
then to extend the concept of the force transmitted to
the base.

The idea of transmissibility for a damped, linear
single degree of freedom system under harmonic
excitation is well established. It is commonly defined
as either the ratio of the force transmitted to the base
to the applied force, see Sykes, [15], and Ungar and
Dietrich, [16], or alternatively for a single mass
undergoing base excitation, it is defined as the ratio
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of the base motion to the displacement of the system
mass.

Another measure of isolator performance is effective-
ness, see Sykes, [15] and Ungar and Dietrich, [16].
This quantity is also referred to as isolator effectiveness,
isolation effectiveness, and insertion loss, see Rubin
and Biehl, [17]. Effectiveness is a nondimensional
measure of the reduction of the vibration of a system.
It is defined as the ratio of the structural vibration of
the system with no isolator (the source and receiver
are rigidly connected) to the structural vibration of
the isolated system. If this ratio is greater than unity,
the isolator reduces the amplitude of the receiver
response. If this ratio is less than unity, the isolator
increases the amplitude of the receiver response.
Recently, the notion of effectiveness has been expended
by Swanson et al., [18] to systems that include multiple
parallel isolators connecting one mass t0 a foundation.

Another metric for vibration isolation systems is
that of power transmission, or power flow as defined
in Pinnington, [19], and Qu and Qian, [20]. The
expression for the time averaged power transmission
due to a harmonic input for multiple input, multiple
isolator system is given by Pinnington, [19]:

wP =3 Im([F *I7[A][F]) (36)
where [F] is the vector of applied forces, [A] is the
accelerance matrix, and « is the frequency of the
applied force. The superscript T denotes the transpose
and the superscript * denotes the complex conjugate.
Further qualification of this expression is presented
for broadband application where spectral densities are
used. Correlation between the analytical method and
an experimental system is presented in the cited work.

All of these metrics are derived under the assumption
that the system under investigation responds linearly.
No provision is made in any of the metrics for
nonlinear system response. Moreover, the effectiveness
and transmissibility metrics assume that the chosen
system response variable (force, velocity, displacement,
etc.) is rectilinear in nature. Application of these
metrics to general rigid body vibration isolation prob-
lems would be inappropriate, as the system response
is typically no rectilinear. Additionally, for the trans-
missibility and effectiveness metrics as applied, the
assumption is made that the disturbance and the
response are collinear. Thus, a single isolator does
not isolate in more than one direction. As such, the
vectorial aspects of the response are neglected and
the actual effectiveness of the isolation system cannot
be captured using these metrics. Furthermore, for
nonlinear systems, small changes in the harmonic force
acting on a rigid body on resilient supports can lead
to pronounced changes in the system response. This
situation can affect the direction of the reaction force
at the point of connection between the isolator and
the foundation. Therefore, the general response of

the system must be investigated in order to completely
capture the system response and isolation performance.

5.2 Measure of Isolation Efficiency

Assessment of the isolation performance of the system
is now developed. The metric chosen for application
to this system is the forces transmitted to the base.
Two modifications are required to adapt this metric
to account for the nonlinear response of the system.
The first modification develops the capability to
account for the presence of more than one frequency
in the system response. The response for this system
is comprised of two frequencies and is periodic.
Therefore, the root-mean-square (rms) of the response
is used to account for multiple frequencies.

The second modification to this metric is made to
permit system response in all three degrees of freedom
to be accounted. This is done by using the forces
transmitted to the base developed in each of the
springs in the system model. These forces are due to
the response contributed by each of the three degrees
of freedom and therefore will account for the total
motion of the rigid body.

Using these two modifications, the force used in the
metric can be computed. First, the vertical and
horizontal components of the forces for each of the
springs (Fy, and F, for k., F», and F,, for k3, F3, and
F, for ks, Fy, and F,, for k4) represented here as x
and y respectively, are computed. The total force from
each pair of springs on the foundation is due to the
deflection of the pairs of springs /; and k,, and k5 and
k,, given by Fy, and F, respectively. These forces are
given by:

Fio(t) = V(Fio + Fo )? + (Fiy + Fy,)? (37)
F34(t) = \/(73x + F4X)2 + (F3,v + F4,v)2 (38)

These forces are time dependent. Therefore, the rms
value of each of these forces is computed and then
summed:

F= (FIZ)rms + (F34)rms (39)

It is this force, F, that is used to assess the isolation
performance of the rigid body system.

Figure 6 shows a plot of the magnitude of the force
given in Eq. (39) as a function of the detuning
parameter o; for the system under investigation. This
figure also contains the frequency response of the
linear system. Here, the linear system response was
computed using Eq. (39) after setting the coefficients
of the nonlinear terms to zero.

From Fig. 6, it can be seen that in the region
between o, = =125, the force transmitted to the
foundation for the nonlinear system, which can be
either of two stable solutions, is reduced in comparison
with the forces transmitted by the equivalent linear
system. In particular, the large peak in the response
for the linear system is eliminated. This performance
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Fig. 6. Response plot of the force transmitted to the base. Solid line — stable solution; dotted line — unstable solution.

advantage is lost in the regions 228 > oy > 125 and
—125 > g, > —228, where the transmitted forces of
the nonlinear system are greater than the forces of
the corresponding linear system. For oy > 228 and
oy < —228, the linear and nonlinear solutions are
identical and no advantage is realized from the
nonlinear system. In these regions, the transmitted
forces are much lower than those associated with the
linear resonance condition and are typically of less
concern.

This analysis illustrates the need for proper system
modelling. Modelling this system using linear theory
leads to the incorrect system response which predicts
that a large peak in the transmitted forces will result
near oy = 0.

6. Concluding Remarks

The equations for the planar motion of a rigid body
have been presented, the geometry and typical system
parameter values being based on a generic in-line,
four cylinder automotive engine. At idle speeds, the
dominant forcing terms arise from unbalanced internal
forces, as opposed to base motions. Although these
forces generate relatively small displacements, it has
clearly been shown that geometric nonlinearities must
be accounted for when modelling the system.

Having analysed the response of the various modes,
it was then shown that the traditional measures of
isolation performance, i.e., effectiveness, transmis-

sibility, and transmitted power, have shortcomings
when applied to nonlinear systems. Specifically, these
metrics do not account for the multi-frequency response
of nonlinear systems. In addition, effectiveness and
transmissibility do not account for system response in
coordinate directions different from the direction of
the input force. However, these two aspects of
nonlinear system response were incorporated into a
modified metric for assessing the forces transmitted to
the foundation. This metric was then applied to the
rigid body problem studied herein.
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Nomenclature

BN E IS AT DS W

1 X2, X3

K

Wy, Wy, W3

half width of the rigid body (m)

half height of the rigid body (m)

coefficient of viscous damping

time derivative with respect to time 7,

force transmitted to the foundation

force associated with coordinate direction X;
rescaled form of f;

transmitted force (N)

mass moment of inertia (m? kg)

spring constant (N/m)

mass (kg)

time scale

horizontal, rotational, and vertical coordinate vari-
ables respectively

coefficients of the nonlinear terms

phase parameter

small dimensionless parameter used in multiple scales
analysis

dimensioness damping coefficient

detuning parameter

natural frequency (rad/s)

forcing frequency (rad/s)



