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Abstract

In the classical formulation of the dynamics of colliding objects, rebound in a direction normal to the
contacting surfaces is modelled using the well known coefficient of restitution. This coefficient is usually defined
(kinematically) as the ratio of the final relative normal velocity to the initial relative normal velocity of a point in
the contact region. Another definition is the ratio of the normal impulse during rebound to the normal impulse
during approach, a kinetic definition. These two definitions generally are the same but differ in some important
cases. Both definitions however serve the same purpose in an impact analysis, as an artifice for kinetic energy
loss. As such, each provides an alternative approach to the formulation of an impact analysis, each with its own
advantages and disadvantages. These are discussed in the context of an impact of a rigid body with a massive
surface.

Evidence exists that restitution can occur in tangential and torsional modes during collisions of rigid
bodies. The classical model is extended in this work to include these phenomena by appropriate definition of new
coefficients. This results in bilinear models for velocity-change dynamics. These models are assessed using

experimental data. An analytical relationship of these coefficients to kinetic energy loss is provided.

1 Introduction

Ahalysis of the mechanics of impact can be a very complicated subject. Applications can require linear
and nonlinear combinations of friction, thermal effects, dynamic plasticity, wave propagation, etc. Even
low speed collisions can bg complicated, although finite element analysis techniques now provide expanded
solution capabilities. In some problems, the main interest lies not in the stresses and displacements in the
contact region but rather the dynamics (velocity changes and energy loss) of the colliding objects. For many
of these problems the classical approach using concepts of impulse and momentum is not only sufficient,
but bpcause of its simplicity, greatly advantageous. For example, when a designer is interested in the effect
upon a control strategy of a collision of a robot's end effector, a simple model of the collision is desirable.
A simple model is usually sufficient to model chaotic dynamics of vibratory impact. If an automotive
engineer wishes to simulate highway speed collisions for arbitrary vehicle orientations, he or she will
quickly find the finite element approach impractical.

In all cases where a simple model of impact is needed, the classical approach is attractive.
Unfortunately, it has been deprecated and neglected for many years as being oversimplified and impractical.
The classical approach uses coefficients such as the coefficients of restitution and friction in place of more
exact dynamic analyses of local material behavior. What is often overlooked however is that analysis of the
local material behavior or experiments can be used to determine a practical range of coefficient values. For
example, Koller and Busenhart [1986] show by experiment and analysis how the coefficient of restitution
varies for the elastic impact of spheres on thin shallow spherical shells. Another example is Shivakumar, er
al [1985] for impacts of spheres on composite plates. Once the behavior for normal velocity changes is
known, the classical approach provides an algebraic model for simulating velocity changes including other
effects such as friction and surface geometry. The classical approach to impact dynamics using coefficients,
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" and the more exact studies of local dynamic material behavior, should be viewed not as alternatives but as

complementary techniques.

The classical concept of restitution, its definition and its relationship to energy loss is reviewed.
Following this, the experimental and analytical work of others concerning shearing effects during low speed
impact are used as a basis for extending classical theory. Maw, Barber and Fawcett [1977, 1981] report on
their experiments and analytical work which demonstrate tangential elastic effects during impacts of metal
discs. Horak [1948] likewise describes torsional elastic effects. Itis an intent in this paper to show how the
concept of restitution and the use of a coefficient applies to motion other than normal during impacts. The
classical model is extended to permit velocity changes of rigid bodies! to be calculated in the presence of
non-normal restitution. The next section contains a review of the planar problem of impact of arigid body
with a massive barrier. .

2 Planar Impact, Classical Approach

A summary of some pertinent results concerning planar, rigid body barrier impacts from Brach [1988] is
presented in this section. The effects of non-normal restitution are not introduced until a later ség:tion.
Figure 1 shows a free body diagram of an arbitrarily shaped body (lamina) of mass m acted upon by impulses
P, P, and M. The quantities P; and P are the tangential and normal impulse components,
respectively, of the resultant impulse P created by the collision. The quantity M is the impulse of the
moment about point C of the distributed force whose resultant is the impulsé P. The idealized case is
treated where contact is primarily at a known point and so the moment impulse M can be taken as zero.
Three unknowns exist for this problem. They are the final mass center velocity components,2  V, and
V¢, and the final angular velocity Q, Three fundamental equations can be written. These are

Vp+dcQ = - e(vp+dcw) ) d "
4
uvn—vl‘= Hvp= Vvt (2) \
and
mde Vp-mdg Vi - IQ = hG -
mdg v - mdg v¢ - 1o 3) )
Equation 1 follows from the definition of the d
coefficient of restitution; for example see Pestel d
T! . i
and' homs?n [1968]. Typically the range of t N C )
e isrestricted to 0 <e < 1. The second p“ /M R
equation is a consequence of the definition of n
L as the impulse ratio, Figure 1. Free body diagram of an arbitrarily shaped rigid body
L = Py/Pn 4) (lamina) in planar impact.

IThe term rigid body is used here to indicate the presence of significant rotational inertia, not inflexibility.

2Note that the capital or upper case symbols represent final velocity components and small or lower case symbols represent
initial velocity components.
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which gives Equation (2), after the impulses Py and Py are replaced by their corresponding momentum
changes. Note that | is considered to be a constant which depends on the physical process which
generates the tangential force system. Equation (4) is general enough to represent a tangential impulse
arising from

Coulomb or dry friction,

indentation,

restitution, or

A WO =

other forms of tangential force generation.

Finally, Equation (3) is an expression of conservation of angular momentum about point C.
Equations (1), (2) and (3) can be solved for the unknown final velocities. This solution yields:

Vo = vn - lgc (vn +dcw) (5)
Vo= vimh A5l (ntde) i< ©®

Q=0 -—dC—;f—d—d 1Xe mrdew), i<l )

where k is a centroidal radius of gyration defined by k2 = I/m and D = 1 +d¢ (dc - pdg) / k2. The
role of i and the selection of its appropriate value for the solution equationé is not always obvious. If the
tangential force is due only to Coulomb friction with coefficient f, then f is used in the solution equations
in place of . However, for given initial conditions, it may happen that a tangential impulse P, smaller
than fPp causes sliding to end prior to separation. Then the value of 1 corresponding to this smaller
impulse must then be used.” This type of behavior points out the need for a limiting, or critical, value [

which is discussed in the following paragraphs. Other possibilities may arise and are discussed by Brach
[1989].

Energy lost during a collision is an important quantity. From the above equations, the energy loss T
can be expressed as

- 2
T D rdeo A58 {202 A58 12 GRR] ) @

where 1 = (v¢ - dgw)/ (vy + dcw). For convenience this is often normalized by the maximum total energy
loss, Ty of the rigid body such that TL™ = T /Ty ; see Brach [1989] and the Appendix.

In the general case of planar rigid body impact with Coulomb friction, Keller [1986], Brach [1989]

and others recognize that tangential velocity reversals at the contact surface can occur due to kinematical

effects. Keller [1986] integrates the equations of motion to examine the conditions under which the velocity
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reversals occur. Ivanov [1986] also discusses the effects of friction during collisions. Brach [1989]

examines the energy loss and whether or not the frictional force does positive work on the system. His
view is that friction can only reduce the tangential velocity change which occurs in the frictionless case.
That is, if a tangential velocity change occurs when a rigid body impacts a frictionless surface and the same
impact with friction is considered, then a value of p cannot be used which will cause the latter final
tangential velocity to be greater than the frictionless case. Furthermore, a value of p realistically can never
be used in the solution equations Equations (5), (6) and (7), which can cause the kinetic energy of the rigid
body to increase as the result of an impact. These considerations give rise to the critical impulse ratio.

2.1 Classical Coefficient Of Restitution

The notion of coefficient of restitution is attributed by Goldsmith [1960] directly to Isaac Newton.
The kinematic definition of e, Equation (1), is an insightful expedient. The most obvious alternative for
Equation (1) would be an expression for energy loss such as

T =Ti-Tr (1-a)

where T; and Ty are the initial and final kinetic energies, respectfully. Because energy is quadratic in the
velocities, the impact problem formulated with Equation (1-a) in place of Equation (1) remains algebraic
but becomes nonlinear. Consequently, the use of e as an energy loss parameter has the advantage of
linearity over Ty and is completely equivalent as discussed in the Appendix.

The coefficient of restitution can be defined in a fashion different from Equation (1). The most
common alternative is a kinetic definition, denoted here by R, where

R=PF/Ph )

as described by Christie [1964]. Here, P}; is the rebound or expansion portion of the normal impulse Pp
and P': is the approach or compression portion. The terms compression and expansion refer to the

deformation associated with the normal contact forces. Thus
R A
P, = P +P (10)

Christie [1964] shows that for point mass collisions, the kinematic and kinetic definitions give identical
results, that is, R = e. Unfortunately, for rigid body collisions, the kinematic and kinetic coefficients of

restitution are not always identical. To show this, and to use the kinetic definition, requires breaking the
contact duration into two parts, T, to T and T to T, where T, is the time of initiation of contact, T is

the end of contact (time of separation) and 7 is the time when compression ends and rebound begins. This

requires the introduction of additional unknowns (velocities and impulses) and equations.
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For a collision of a single rigid body as Fig.1, it is shown in the Appendix that

k2 +dc (dc - Ha dd)

=e 11)
k2 + dc (de - KR dd)
where [, and pp are partial impulse ratios separated into approach and rebound phases,
w, = PA/PA (12)
and
hg = P}/ P} (13)

Since relative tangential motion can end at any time during the contact interval T, to T,, it is apparent that
M and pp are not generally equal. From Equation (11), the kinematic and kinetic coefficients are the same

when
. u’A=uR . dC=O

¢ de-ppdg = dc-Hadg + dg=0

A subset of the condition [ =g is a frictionless collision such that both are zero. Another important

special case is when sliding continues without reversal throughout the contact duration in the presence of

-Coulomb friction. In this case y, =g =f, where f s the friction coefficient.

Some of the implications of the above can be summarized as

e

The coefficient of restitution is an artifice for the energy loss parameter, Ty ;

2. The use of the kinetic coefficient of restitution requires the introduction of additional
unknown velocities and impulses (in effect, doubling the number of unknowns);
3. An equivalence exists between the two coefficients R and e such as given by
Equation (11)

The practical significance of this for impact problems is that the kinematic coefficient of restitution, e,
should generally be used. Use of the kinetic coefficient, R, may provide advantages in some instances
and it can be viewed as a viable alternative.

2.2 Oblique, Central Impacts

A special case is considered in this section, where dc = 0 and d4q = p. This is where the mass
center lies directly above the contact point. This is done not only to simplify the discussion but because
under these conditions (and when the tangential force is due to Coulomb friction alone) a velocity reversal at
the contact point cannot occur. In this case the critical impulse ratio is
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e = - 1. r o o (14)

where A = k2/p2 and Hc isthe impulse ratio which reduces the tangential velocity at the contact point
to zero. The quantity Hc bounds the impulse ratio; consequently, a critical tangential impulse exists which
is pcPp. Brach [1984] shows that under the conditions of this Section, Hc also corresponds to the value
of p which maximizes TL (1) and with e=0 provides Tm. Specific bounds on the energy loss are

pursued in more detail in the Appendix.

An example is now presented to provide a comparison with the response including tangential
restitution. A circular disc with radius p has a radius of gyration of k = p/ N2. For arbitrary initial
velocities, vn, vt and o, the final rebound velocities are found from Equations (5), (6) and (7) to be

Vn = = €Vp (15)
Vi=wv-pn@d+e)vn, I < el (16)
Q=ow+2u(l+e) va/p, It < Ipel Qa7

where Equation (14) provides the corresponding

Vet
iti . h —
c.rmcal va.lu.e.of vl .L.ct Vo and ver .bet e v prme | A<
final and initial velocities at the contact point C.
From Equations (16) and (17),
Ve = v - R(1+e)vn(l +\) (18)
0 B
or, using Equation (14), // v
/ <
n // Vn
Ve = ver (1= [0 Wepd (19 ,
/
/
The normalized final velocity Vei/va s af

plotted in Fig. 2.
Figure 2. Ratio of the final tangential velocity of the contact
point to the initial normal velocity where rolling exists for initial

velocity ratios less than point B and sliding for initial velocity ratios

greater than point B.

For W=, the tangential impulse is large enough to cause sliding to stop before separation. This is the
line from point O to point B and corresponds to rolling at separation. For Iul< liel, relative tangential
motion continues through separation and corresponds to the solid line with a unit slope beginning at point
B. Point A, the intercept, can be used to determine the value of p from experimental data, providing that
e is known. This intercept can be identified from Equation (18).
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3 Planar Impact With Tangential Restitution

The case is now considered where elastic energy can be stored in a mode which can cause the tangential
velocity v¢ to reverse itself following an impact in a manner different than discussed above. To account

for this, Equation (2) can be changed to a form analogous to Equation (1). Thus
Ve = V- ddQ = - e (v~ dqo) (20

where e, is a tangential coefficient of restitution. To complete the analogy, €; is bounded in a matter
similarto e, thatis, 0<e;<1, although other values can make physical sense as will be seen shortly.
The system equations (Equations (1), (20) and (3)) remain linear in the final velocities and again can
be solved easily. For expediency, the equations for dc = 0 and dq = p are examined. These are

Vo = vn-(1+¢€)vp (21)
V[ S —-1_‘— (1 + C[) (V[ - pO)) (22)
1+ A
and
1 A
Q=0+ — (1+e) (vi- pw) (23)
pl+A

Equation (21) is an alternate form of Equation (15) but the other 2 equations differ from before. Though
they differ, it is possible to examine an equivalence between the impulse ratio p and e;. Equating Vi
from Equations (16) and (22) gives

=1 (24)

This equivalence makes intuitive sense since ¢ = 0 indicates zero final relative tangential velocity which
is also the case for p = p¢. Furthermore, it is easy to show that

P = - —1%; (1+e) (V- po) 25)

Note thatif -1 is placed into Equation (25) for e, it indicates that the tangential impulse is zero. This
also agrees with Equation (24), since p= 0 implies P; = 0. Using this equivalence, it is possible to
expand the definition of W and notuse e atall. Since p is usually associated with friction and e
with restitution, distinct physical processes, the two coefficients will be retained.

V¢t can again be plotted as in Fig. 2, but for the current case of restitution using Equation (20), which
is a straight line through the origin with a negative slope. When sliding persists to separation, Equation (18)
or Equation (19) still applies. Both are superimposed inFig. 3 along with the data points from the experiments
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of Maw, etal [1977]. Their experimental data corresponds to a 4 inch diameter steel disc colliding with a
fixed steel barrier at various angles and speeds. The coefficient of restitution was measured to be e =
0.93 and independent sliding experiments provided a coefficient of sliding friction f =0.123. Extending
the line with unit slope corresponding to sliding at separation gives an intercept of —0.72; this provides a
value of the impulse ratioof p = 0.124. This seems to indicate that for these experiments, the tangential
impulse is generated predominantly through friction, at least when sliding exists throughout the duration of
contact. The corresponding experimental tangential restitution coefficient is e; = 0.34. In addition to
conducting the experiments, Maw, et al [1981], report on an analysis of the problem of a sphere impacting
on elastic half space. Their analysis provides a model which fits the data about as well as the bilinear model

presented here. Their elastic half space model is not discussed here.

Fig. 3 shows two lines, one from the impact

model based on 1 and the other based on €. 2

Together they can be viewed as a bilinear model Sliding Continues

of the impact process which, by Fig. 3, seems to

Through Separation

do an adequate job of representing the data. In Rolingat |

general, if the body has considerable initial spin | Separation

or approaches the barrier at a low angle of
incidence, sliding continues throughout the
contact duration. On the other hand, for a given

set of initial and physical conditions, typically

FINAL VELOCITY, ‘vc‘/ Vi

characterized by f > licl, the final state of the
body will be rolling. If the tangential elastic
properties are appropriate and the final conditions -0.72
are in the rolling range, the tangential velocity of

-1 1 1

the contact region can reverse as demonstrated by 0 ] 5 3

the Maw data. Note that data continues to
INITIAL VELOCITY, |Vet/ i

follow the sliding line until it intersects the line

dictated by restitution. Figure 3. Ratio of the final tangential velocity of the contact
point to the initial normal velocity given by the analytical model
(heavy line) and the experimental data points of Maw, Barber and
Fawcett [1977].

This can be summarized in the following way. For a rigid body impact with
« friction coefficient f <lucl, « coefficients of normal restitution e
- initial velocity ratio r « coefficient of tangential restitution e;
then Vg = Vi (i = lor2,) where

vV, = vct(1—£), 0 < Ived < fll—:—e%lvnl(lﬁn)
(26)
o 1 +e
Vy = - e Ve, f1+e[ Ivpl (1+A) < vl
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If e = 0, that is, no tangential restitution, and f >Ipcl, then Vi = V2 = 0 since the impulse
ratio, W, isequalto pic and not f. Itis apparent that the tangential impulse (and force) associated with
shearing and restitution is transmitted via the frictional impulse (and force). Consequently, for low friction,
sliding continues throughout the contact duration and little restitution can occur. For high friction the initial
sliding ends quickly and the capability of transmitting elastic tangential energy is greater. However, the
initial slope of the final velocity curve is e, which is bounded above by 1. Consequently, tangential
restitution and its associated velocity reversal is typically small. Of course if the mechanism of tangential
impulse transmission is other than friction, for example indentation, the potential for velocity reversal is
greater. However, little has been done in studying this phenomenon. The energy loss associated with
V1 above is given by the earlier expressions. For V2, and bodies with dc = 0, such as discs and
spheres, and for @ =0, the energy loss (expressed as a fraction of the maximum energy loss) is shown
by Brach [1988] to be

£ 1
- - e2) ¢in2 - a2 2
lI = (1 - e4) sin‘a + " (1 - ef?) cos2a 27

where the angle o is the angle of incidence relative to the tangential axis. For e = e; = 1, noenergyis
lost. In reality, the likelihood of e; being unity is slight, since tangential restitution is coupled with
friction. Despite this, tangential effects can be visibly significant as with elastomeric balls; see, for
example, Johnson [1983].

4  Impact With Torsional Restitution

If a resilient spheﬁcal object such as a basketball or volleyball, is spun about a vertical axis and dropped
onto a rough flat surface, the spin sometimes reverses. The phenomenon is similar to above except that the
storage of elastic energy is of a torsional nature. The appropriate equation involving restitution is simply

Qp = - eztn (28)

where 'Qp is the final angular velocity, ®p is the initial angular velocity and ez is a torsional
coefficient of restitution. If the initial angular velocity about the normal axis is high enough, its final value
may not be opposite in sign; in the presence of Coulomb friction, the angular velocity may simply decrease.
Some torsional restitution may still be present even when rotational sliding does not end prior to separation.
When it is, its effect is to decrease the rotational velocity somewhat more than friction alone. The
corresponding equation of angular impulse and momentum is

In(Qp-wp) = Mp = HzppPn-ezIn o (29)
where My is the torsional impulse, |, is a dimensionless frictional impulse ratio and pp is a pitch radius

of the torsional frictional impulse. The second term on the right hand side is the restitutional effect where it
is expected that e, in practice will be small comparedto 1. Eliminating Pp and solving for Q gives
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This equation is valid for large values of initial angular velocity when frictional sliding provides that [, =%
f, thatis, f is less than acritical Hgz.

A bilinear model results as it did in the tangential problem covered in the previous section. Equation
(28) is valid for low values of initial angular velocity and Equation (30) covers higher values. The transition

is at a value of @y such that

Gn = 1, T2 (1+) vy 31)

Fig. 4 shows Equations (28) and (30) plotted with 20

the data of Horak corresponding to a rubber ball

—_
o

bouncing from a marble slab. If the effect of
torsional restitution did not extend into the range

where spinning/sliding continues throughout the

o

contact duration, the last term in Equation (29)
would be absent and the first term of Equation

(30) would be w;. This would give Equation -10

FINAL VELOCITY, Q, rad/sec

(30) a slope of unity rather than 1l-ez. The ‘
dashed line in Fig. 4 is from Horak [1948] and 20 | / | .
represents an asymptote of his data. 0 10 20 30 - 40 50

Consequently Equation (30) in the above form INITIAL VELOCITY
fits the data better with a slope of I-e,, but for o radisee

Figure 4 Final angular velocity of a dropped spinning sphere;
bilinear theoretical model with experimental data points of
Horak (1948). The dashed line is Horak's asymptote with a unit
slope.

very large values of ®, may be better with e, set to 0. The model agrees fairly well with the experimental
data. Horak [1948] develops an elastic model which agrees somewhat better with his experimental data.

The reader is referred to that work for details.
5  Conclusions

The experimental data of Maw, et al [1981] and Horak [1948] demonstrate that the process of
restitution is not restricted to normal deformation alone during impacts. The concept of a coefficient of
restitution serves as an artifice for energy loss and its use can be extended to cover tangential and torsional
deformation.

The bilinear models agree well with the available experimental data. Tangential and torsional velocity
reversals depend on friction for transmission of forces and torques. Because of the energy loss associated
with the friction the values of the tangential and torsional coefficients could not be expected to approaich

the value of 1.
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6  APPENDIX: Classical Normal Coefficients And Energy Loss

When the kinetic coefficient of restitution is used, an impact analysis must be carried out for each of
two phases, or intervals, of the contact duration. This is demonstrated in this Appendix to reveal the
relationship between the kinetic coefficient, R, and the classical coefficient e. An impact of a rigid body
against a massive surface is considered for simplicity. The following analysis could be carried out for a
collision of two rigid bodies but the simpler case provides the necessary insight into the relationships. The
partitioning of energy loss between normal and tangential processes is also examined for the case of the
kinematic coefficient.

To carry out this analysis, the impact is broken conceptually into two phases. The first phase is when
the deformation in the contact region, normal to a common tangent plane, consists primarily of compression
(elastic energy storage) and is referred to as the approach phase. The second phase is when some fraction of
the stored elastic energy is released and is referred to as the rebound phase. The corresponding time

intervals are Ty to T and T toT,. The times T, and T, correspond to the times of initial and final
contact. If separation does not occur, the latter is the time at the end of the normal impulse. In the following

analysis overbars indicate variable values at ime T. Subscripts and superscripts, A and R, refer to
approach and rebound phases respectively. Capital velocity variables represent final values at T=12 and
small, or lower case, velocity values correspond to T =1.

For the full contact duration of the body in Fig. 1, Newton's laws in the form of linear and angular
momentum give

m(Vp-vn) = Pn (A-1)
m(Ve-v) = P (A-2)
(Q-®) =dcPy - daPx (A-3)

For the approach phase, the corresponding equations are:

m(¥n - vo) = P4 (A-4)
m(\-/[ - V[) = P‘? (A'S)
1(@-®) = dcPA - daP} (A-6)

Likewise, for the rebound phase

m(Vp-¥n) = PR (A-T)

m(V;- %) = P’ (A-8)
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L@ -8 ‘=k‘ch§ - VddPIf“ L S A9

By definition of the events at time T, the normal velocity of the contact point must be zero. This is

Vn+dcow =0 (A-10)
Partial impulse ratios must be defined. These are

A DA
pA/PA (A-11)

Ha

R ;bR
ug = PR/PR (A-12)

where these are simply the ratios of whatever impulses develop for the given physical system and initial
conditions. For the solution of the impact problem, they are assumed to be constants which may or may not

be known a priori.

Omitting some algebraic steps, the following two equations can be derived from the above equations:

P}§ (1 + mdc(dcl‘ Lrdd)

) = m (Vp +dcQ) (A-13)

and

de(de - B od
pA (1 + MT—M) = - m(vp + dcw) (A-14)

Division of Equation (A-13) by Equation (A-14) provides

PR 1+ mde(dc - ppdd) _ _ Vo +dcQ (A-15)
PA I+ mdc(dc - pada) Vn + de®

From Christie [1964], the kinetic coefficient of restitution R is the ratio of impulses on the left hand side of
Equation (A-15). From Pestel and Thomson [1968] the kinematic coefficient of restitution e is defined as
the right hand side of (A-15). Consequently,

I + mdc(dc - lJAdd) k2 +d¢(dc - Ha da)

e = e (A-16)
I + mdc(dc - pgrdd) k2 + d¢(dc - Hg dd)

R:

A primary reason for introducing the coefficient of restitution e is to represent energy loss due to the
action of normal forces in the contact region. Energy can also be lost through the work of tangential forces.
The interaction of the coefficients e and | in controlling energy loss is illustrated conveniently by
examining the normalized energy loss, T;:. According to Lord Kelvin and P.C. Tait [1903] the work of an
impulse is the scalar product of the impulse and the average velocity at its point of application. From this the

179



~energy loss associated with the normal and tangential impulse components Py-and-Pycan be found. - This
gives

(A-17)

Ty is the maximum energy loss which is found by letting e =0 and B = Hy. Dy =D(iy) and py is the
impulse ratio corresponding to V¢ =0 (and e = 0). For a point impact, Ty, corresponds to the final

condition where the body attaches itself and consists of pure rotation about point C with angular velocity
Q. Both terms depend on e and p. The first term of Equation (A-17) is the energy loss associated with

P, and is controlled by the factor 1-e2. The second term is associated with Py and is controlled by the
impulse ratio p. With the bounds 0 <e <1 and O<Iul<lpcl, the energy loss is bounded by

0< Tz <1, (A-18)

Consequently the kinematic coefficient of restitution e along with the impulse ratio W serve as valid and
complete energy loss parameters. According to W. J. Stronge [1990], Equation (A-17) does not apply to
noncentral collisions of rigid bodies for certain conditions of sliding reversal under a Coulomb friction model.
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Nomenclature

Sub or superscript indicating the approach phase of an impact
Contact point

Nondimensional inertial distance (See after Equation 7).
Distance

Kinematically defined coefficient of restitution

Coefficient of friction

Centroidal mass moment of inertia

Centroidal radius of gyration

Impulse of a moment

Mass

Subscript indicating the normal direction

Impulse of a force

Sub or superscript indicating the rebound phase of an impact
Kinetically defined coefficient of restitution

Ratio of initial \‘/elocity components (See Eq. 8)

Kinetic energy loss

”-%“W?U’U:gzx'—-noo.gn-y

Subscript indicating the tangential direction

V,v  Final and initial velocities, respectively

o Angle of incidence of the contact point; tan-! (1/1)

A Ratio of radius of gyration squared to radius squared
il Ratio of impulse components, P/ Py

p Radius

T Time

Q. Final and initial angular velocities, respectively
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