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ABSTRACT

The force distributed over the contact patch between a
tire and a road surface is typically modeled in component
form for dynamic simulations.  The two components in
the plane of the contact patch are the braking, or traction
force, and the steering, or side or cornering force. A third
force distributed over the contacts patch is the normal
force, perpendicular to the road surface. The two tangen-
tial components in the plane of the road are usually mod-
eled separately since they depend primarily on
independent parameters, wheel slip and sideslip. Mathe-
matical expressions found in the literature for each com-
ponent include exponential functions, piecewise linear
functions and the Bakker-Nyborg-Pacejka equations,
among others. Because braking and steering frequently
occur simultaneously and their resultant tangential force
is limited by friction, the two components must be prop-
erly combined for a full range of the wheel slip and side-
slip parameters. This paper examines the way in which
these two components are combined for an existing
approach known as the Nicolas-Comstock model.

First, performance criteria for tire modeling are proposed.
Then the Nicolas-Comstock model is examined relative
to the criteria. As originally proposed, this model falls
short of meeting the criteria over the full range of trans-
verse and longitudinal wheel slip values and sideslip
angles. A modified version of the Nicolas-Comstock
model is presented that satisfies these performance cri-
teria. Finally, comparisons are made of the Modified
Nicolas-Comstock model to other combined tire force
models and to existing tire force measurements.

INTRODUCTION

Aside from gravitational forces, aerodynamic forces and
intervehicular forces developed during collisions, the
forces and moments generated by the interaction
between the tires of a vehicle and the ground normally
control the motion of the vehicle. Hence, vehicle dynami-
cists require a means by which these forces can be com-

puted. Since the 1930's, numerous models have been
presented for use in predicting the forces and moments
at the tire-road interface.

In order to establish a standard within the industry, the
SAE has recommended a reference tire axis system as
shown in Figure 1. This figure shows all the moments and
forces associated with a wheel. The three moments
shown in the figure are not discussed in this paper
because the topic of interest is the way in which Fx and
Fy are modeled and related under combined braking and
steering conditions. An analytical approach has been
developed which includes all tire forces and moments
[Gim and Nikravesh, 1990, 1991a, 1991b].

Figure 1.  

The x axis in Figure 1 is the intersection of the wheel
plane and the road plane and the y axis is perpendicular
to x and in the plane of the road. The force Fx is referred
to as the longitudinal force. It can be developed by engine
torque as a driving or traction force (forward or reverse)
or can be developed by brake application as a braking
force. Fy is referred to as the transverse or lateral force. It
is sometimes called a side force, steering force or corner-
ing force, and is perpendicular to the heading of the
wheel. The resultant of these components, F, is in the
plane of the contact patch where F2 = Fx

2 + Fy
2 and is
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generated through friction between the tire and road sur-
face. Initially in this paper, the modeling of Fx and Fy are
examined independently from each other. Later, the
paper focuses on modeling these forces under the condi-
tion of combined steering and braking. This model pre-
sents an alternative to existing models [Nguyen and
Case, 1975, and  Schuring, et al., 1996] for use in vehicle
dynamic simulations.

Over the years various mathematical functions have been
use to represent Fx and Fy. Various methods have been
proposed [Nguyen and Case, 1975; Schuring, et al.
1996] to combine them to model conditions of simulta-
neous braking/traction and steering. In order to model tire
forces properly, Fx and Fy and their combination must
meet certain conditions and so a set of performance cri-
teria is presented.  An existing model by Nicolas and
Comstock, 1972, allows any functions to be used for Fx
and Fy and is a relatively straightforward approach. How-
ever, since  it does not meet all of the performance crite-
ria, a modification is proposed to improve the model. Tire
data1 collected by the SAE [Anonymous, 1995] is used to
assess the modified Nicolas-Comstock model. This mod-
eling technique is compared to other techniques, and the
results are discussed.

LONGITUDINAL AND TRANSVERSE FORCE 
COMPONENTS

THE LONGITUDINAL FORCE – The longitudinal force at
the tire patch can be a tractive force or a braking force.
Figure 2 shows a side profile of a wheel rotating about its
axle with an angular velocity ω. The longitudinal force, Fx,
is a traction force acting in the direction of the velocity,
VF, of the wheel at the tire-ground interface. The force,
Fz, is the normal reaction force of the ground on the
wheel. The longitudinal force is known to be a nonlinear
function of the wheel slip s. Wheel slip can be defined in
several ways [see Wong, 1993]. 

For a braking wheel,

Figure 2.  

where R is the effective rolling radius of the wheel and
VW is the hub velocity of the wheel and VF is the forward
velocity at the contact patch. For a freely rolling wheel,
the forward velocity VW = Rω and s = 0, i.e. no slipping
occurs between the wheel and the ground. If the wheel is
locked from rotation by braking, ω = 0 and s = 1, corre-
sponding to a locked wheel skid. For a wheel with posi-
tive traction such as Fx in Figure 2, slip can be defined as

Here, for the ideal case when engine torque is generating
a forward force Fx and VW = Rω, then s = 0. If the forward
velocity is restrained to be zero but the wheel is rotating,
then s = 1. A reason for the two different definitions is that
the latter case will produce a slip of ∞ from Equation 1.
With the two different definitions of wheel slip, the range
of s is  0 ≤ s ≤ 1. In the following, Equation 1 will apply to
braking and Equation 2 to forward traction, so that in all
cases, 0 ≤ s ≤ 1.

Longitudinal forces, both traction and braking, are func-
tions of the wheel slip s, that is, Fx = Fx(s). A wheel that is
locked from rotation and moving in the direction of posi-
tive VW produces a longitudinal force Fx such that Fx =
µxFz, where µx is the coefficient of sliding friction between
the tire and the ground in the longitudinal direction. It is
convenient to look at the longitudinal force in a normal-
ized form, where

1 These data were collected by the SAE Truck Tire Charac-
teristic Task Force pursuant to NHTSA Contract DTNH22-
92-C-17189.  The data are available from SAE Coopera-
tive Research, Warrendale, PA.
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Figure 3 shows a typical distribution of a longitudinal
force Qx(s). Initially, a braking force is approximately lin-
ear with slope Cs, often called the slip stiffness. Fx(s)
grows nonlinear as s increases beyond a value of about s
= 0.1, and typically reaches a maximum in the range 0.15
< s < 0.30. On most roadway surfaces the braking force
decreases as the slip s is increased beyond the maxi-
mum.  The normalization process in Equation 3 creates
the condition that the longitudinal force is equal to
µxFzQx(s). The shape of this curve, and its associated
maximum, is one of the reasons for the development of
anti-lock braking systems.  One function of an anti-lock
brake system is to maintain the forward force, Fx, near
the maximum.

Figure 3.  

THE TRANSVERSE TIRE FORCE – The transverse tire
force lies in the plane of the tire patch, is perpendicular to
the heading of the wheel, and opposes the transverse
velocity VT which is shown in Figure 4. It is this trans-
verse force that provides directional control of a vehicle.
During a steering maneuver, the heading angle of the
wheel and the resultant velocity, VR, differ by an angle α
which is called the sideslip angle (or the slip angle) as
shown in Figure 4. The sideslip angle is therefore defined
as follows:

where VT and VW are shown in Figure 4.

Figure 4.  

For a freely rolling wheel (s = 0), the transverse force Fy =
Fy(α) and is a nonlinear function of slip angle α. For no
transverse velocity, α = 0, the transverse force is 0 and
corresponds to where the wheel velocity is aligned with
its heading. At another extreme, when the slip angle α =
π/2, the transverse force is normal to the wheel’s heading
and is equal to the coefficient of sliding friction in the
transverse direction times the normal force at the wheel,
Fy = µyFz. A normalized version of the transverse force
can be defined as follows:

A representative plot of a normalized transverse force
Qy(α), is shown in Figure 5.  This shows that Qy(α) is
approximately linear for small values of the sideslip angle
α.  As α increases, Qy(α) becomes nonlinear as the
slope decreases and the normalized force approaches 1
as α approaches π/2.  The slope of the actual force Fy(α)
at α = 0 is called the sideslip stiffness, Cα, also referred
to as the cornering stiffness.  Fy(α) also approaches the
road friction limit µyFz at α = π/2.

According to Coulomb’s theory of rigid body friction, the
coefficient of sliding friction is independent of direction
and load, i.e. µy = µx = µ. However, experimental data
has shown that for tires, differences between these val-
ues do occur,  [Warner, et al.  (1983)], so these coeffi-
cients are considered distinct. Following the above
preliminary concepts, individual mathematical models for
the longitudinal and transverse forces are discussed and
presented.
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Figure 5.  

TIRE FORCE EQUATIONS – In the past and depending
on the application, various mathematical equations have
been used to represent tire forces including piece-wise
linear approximations and exponential functions, among
others; for details, see Nguyen and Case, (1975). Recent
work by Bakker, Nyborg and Pacejka (1987) produced a
convenient tire force formula based on a combination of
trigonometric and algebraic functions. This is referred to
in this paper as the BNP model or the BNP equations.
The BNP model applies equally well to both the longitudi-
nal and transverse forces (as well as contact patch
moments).  Due to its convenient form and its ability to fit
experimental data reasonably well, the BNP model has
supplanted previous methods and has been adopted by
various authors. These include, Schuring, et. al. (1993)
and d’Entremont, (1997). It also has been called the
"Magic Formula". Because of the versatility of the BNP
model, it is used in this paper as well. A short description
of the model follows, in which the equations are pre-
sented in a normalized form.

The BNP tire force equation expresses a tire force, P, as a
function of a parameter, u, where 0 ≤ u ≤ 1 and can repre-
sent either longitudinal wheel slip, s, or sideslip angle, α.
The force Q is used here where Q(u) = P(u)/P(1), where
P(1) = P(u)|u=1. The BNP equations in normalized form
can be written as:

and

The parameters B, C, D and E are constants chosen to
model specific wheel and tire systems and/or to give
forces that correspond to specific experimental data.
(The original BNP equations contain additional constants
Sv and Sh that permit a vertical and horizontal offset of
the origin to allow a more accurate match to experimental

data; for simplicity, these are set to zero here.) For the
longitudinal force model, the constant, K, is given a value
of 100 so that 0 ≤ Ku ≤ 100 corresponds to a percentage
wheel slip. For the transverse force, the constant, K, is
given a value of 90 so that 0 ≤ Ku ≤ 90 corresponds to
degrees of sideslip. Furthermore, since the forces are
normalized to their value at u = 1, the constant D is given
the value of 1. When modeling a longitudinal force, u rep-
resents longitudinal wheel slip s. When modeling a trans-
verse force, the sideslip angle is such that 0 ≤ α ≤ π/2 and
so u = 2α/π. The initial slope of Q(u) is BCK/P(1) which is
the first derivative of Q(u) evaluated at u = 0 with D = 1
(see Appendix 1). Equations 6 and 7 are used with differ-
ent constants B, C and E, to model longitudinal and
transverse tire force components. The force magnitudes
are found simply by multiplying each Q(u) by its appropri-
ate limiting frictional force. That is, Fx(s) = Q(s)AµxFz and
Fy(α) = Q(α)AµyFz. The initial slopes of Fx(s) and Fy(α)
are the stiffness coefficients, so

and

respectively. When modeling wheel and tire systems with
specific, known stiffness coefficients, Cs and Cα, the
shape and curvature factors, C and E, respectively, can
be chosen to establish the appropriate shape of the tire
force function.  Equations  8 and  9 can then be used to
solve for the corresponding value of the stiffness factor,
B.

COMBINED LONGITUDINAL AND TRANSVERSE 
FORCES

CRITERIA FOR COMBINING THE TRANSVERSE AND
LONGITUDINAL FORCE COMPONENTS – With the
appropriate coefficients B, C, D, E, and K, the BNP equa-
tions provide expressions for the longitudinal force com-
ponent Fx(s) when there is no sideslip angle, α, and for
the transverse force component Fy(α) when there is no
wheel slip. During combined steering and braking, how-
ever, each of these components will simultaneously be a
function of both the longitudinal wheel slip s, and the
sideslip angle α. Hence, the force components must be
described as Fx(s,α) and Fy(α,s), respectively. The
approach taken here is to combine the individual longitu-
dinal and transverse force component equations in such
a way to produce a single force, F, tangent to the roadway
surface where

with components collinear with and perpendicular to the
heading of the tire, and both in the road plane.
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All models of the combined tire force, regardless of the
formulation, must provide realistic results. To do this, the
following performance criteria are proposed for the pro-
cess of combining the transverse and longitudinal com-
ponents:

1. the combined longitudinal force component Fx(s,α)
should approach the longitudinal component Fx(s) as
α → 0, i.e. Fx(α,s)|α → 0 → Fx(s);

2. the combined transverse force component Fy(s,α)
should approach the transverse component Fy(α), as
s → 0, i.e. Fy(α,s)|s → 0 → Fy(α);

3. the combined force, F(α,s), must be friction limited,

4. the combined tire force F(α,s) must agree at least
approximately with experimental results; and

5. the combined tire force F(α,s) should produce a force
equal to µFz in a direction opposite to the velocity
vector for a locked wheel skid (s = 1) for any α.

It is instructional to begin the investigation of combined
tire friction forces by looking at the concept referred to as
the "friction circle" [see for example, Warner, et. al.
(1983)]. This concept asserts that the total available fric-
tion force at the tire-road interface is given by Fmax = µFz,
and its direction lies opposite to the direction of the
resultant velocity vector, VR. The concept further asserts
that if the vector sum of the longitudinal force and trans-
verse force is less than Fmax, the tire will continue to track
and rotate. Experiments show that tires exhibit properties
that differ from the theoretical friction circle. Differences
in longitudinal and transverse coefficients of friction due
to such attributes as tread patterns, tire construction and
tire geometry, lead to different longitudinal and transverse
limiting forces. Consequently, the friction circle actually is
better described as a friction ellipse. An expression for
the friction ellipse can be written as:

Equation 11 illustrates mathematically the concept that if
a steering input is introduced while braking or if brakes
are applied while steering, less capacity is available for
each individual force than when braking or steering
alone. This leads to the situation, for example, where a
steering input to a wheel under severe braking (but not
fully locked) can increase the force to Fmax, causing the
tire to slide out and begin to skid.

COMBINATION MODELS – While Equation 11 is useful
for an intuitive understanding of the physical conditions at
the tire-road interface under combined loading, it pro-
vides only a bound on the resultant force.  For quantita-
tive use of the combined force, an equation for F(α,s), not
an equality,  is needed.  Various models have been pro-
posed over the years. See for example Nicolas and Com-
stock (1972), Bakker, et. al. (1987), Wong (1993), and
Schuring, et. al. (1996).

The model proposed by Nicolas and Comstock is based
on two conditions. The first is that the resultant force,
F(α,s) for s = 1, is collinear with and opposite to the
resultant velocity, VR. The second condition is that as α is
varied from 0 to π/2, the resultant force F can be
described by an ellipse of semi-axes Fx and Fy. Semi-
axis Fx is the longitudinal friction force defined by a µx slip
curve for α = 0 and semi-axis Fy is the transverse friction
force predicted by an appropriate equation for s = 0. They
produce the following expressions:

Note that from these two equations the ratio of Fy(α,s) to
Fx(α,s) is always (tanα)/s.

Each equation is easily evaluated for a given s and α by
first evaluating Fx(s) and Fy(α). However, for either α = 0
and/or s = 0, the expressions as defined above are unde-
fined. In particular, when α = 0, there is no transverse
force on the tire, i.e. Fy| α=0 = 0 by definition. With both α
and Fy(α) equal to zero, both the numerator and the
denominator of the two equations goes to zero. This is
inconvenient as it is expected that Fx(s,0) should reduce
to Fx(s). Similarly, with s and Fx(s) equal to zero, both the
numerator and the denominator of the two equations
goes to zero. As given above the Nicolas-Comstock
equations do not satisfy all of the criteria presented ear-
lier. For small values of s and α, where it is expected that
Fx(s,α) → Fx(s) and Fy(s,α) → Fy(α), the equations pro-
duce bias factors as is now shown. 

For small values of α and s, the tire is operating in the lin-
ear region of the force curves (see figures 3 and 5).
Therefore, linear approximations can be used for the lon-
gitudinal and transverse forces using the wheel slip stiff-
ness and the sideslip stiffness presented earlier. Hence,
Fx(s) ≈ Css and Fy(α) ≈ Cαα and tanα ≈ α. Introducing
these approximations into equations 12 and 13 yields:

This shows that the Nicolas-Comstock equations have
biased slopes in the combined linear regions of the tire
force curves.

In considering the Nicolas-Comstock equations relative
to the first and second performance criteria, two condi-
tions are examined, that of straight-ahead braking (s = 1
and α = 0) and transverse sliding (s = 0 and α = π/2).
Using these values in Equations 12 and 13 yields the
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conditions of 0/0 and ∞/∞, respectively. This demon-
strates that the Nicolas-Comstock equations also do not
meet the first and second performance criterion.

The bias factors shown in Equations 14 and 15 and the
failure of the Nicolas-Comstock equations to meet the
performance criteria can be mitigated by appropriate
modification of the equations. Modified equations are
presented and investigated in the next section and will be
referred to as the Modified Nicolas-Comstock (MNC)
equations. Typical plots of the force predicted by the MNC
tire friction force model are presented. The capability of
the model to match actual tire behavior is presented
using data recorded by the SAE. A new way of graphi-
cally presenting the force plots is also presented.

THE MODIFIED NICOLAS-COMSTOCK MODEL – The
following Modified Nicolas-Comstock equations are pro-
posed to correct the deficiencies discussed above:

Equations 16 and 17 provide the tire force components
for any combination of the parameters α and s such that
0 ≤ α ≤ π/2 and 0 ≤ s ≤ 1 for any pair of functions Fx(s)
and Fy(α). The equations have a relatively simple form for
use in vehicle dynamic simulations. They easily can be
extended for the range of sideslip angle such that 0 ≤ α ≤
2π. It can be seen that Fx(α,s) and Fy(α,s) as given by
Equations 16 and 17 approach Fx(s) and Fy(α) respec-
tively for 0 < α << π/2 and 0 < s << 1, when Fx(s) . CSs
and Fy(s) . Cαα.

A typical means of viewing models of the combined
forces is to plot the combined forces for given values of α
over the full range of s as shown in Figure 6 or for given
values of s over the full range of α.

Figure 6.  

An alternative means to viewing the equations is used
here by displaying the data over the full range of both
independent variables in one three-dimensional plot.
Figures 7 and 8 are examples.

Figure 7.  

Figure 8.  
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COMPARISON WITH EXPERIMENTAL 
MEASUREMENTS OF TIRE FORCES

FIT OF BNP FORMULA TO EXPERIMENTAL DATA –
The fourth performance criteria presented earlier
requires that the combined tire force F(α,s) must agree at
least approximately with experimental results.  Heavy
truck tire force data was collected through sponsorship of
the SAE and has been made available for general use
[Anonymous, 1995].  In addition to combined force data,
free rolling cornering and straight line braking data were
collected as part of the project. This individual force data
has been used here with an optimization algorithm to
determine the appropriate coefficients for the BNP for-
mula, B, C, D, and E, for longitudinal forces versus s
(straight line braking) and lateral forces versus α (free
rolling cornering). Figures 9 and 10 show the data with
the accompanying BNP curve generated by the fitting
process for one normal force, Fz = 20,604 N. 

Figure 9.  

The BNP coefficients and formulas then were used with
the modified Nicolas-Comstock equations to compute the
combined force for braking and steering F(α,s).  A set of
data was selected to compare the experimental to the
analytical.  The data chosen shows the combined force
for a 295/75|275/80R22.5 truck tire for a slip angles of
±4° [Anonymous, 1995]. The resulting plot comparing the
experimental and analytical data is shown in Figure 11.

The comparison shown in Figure 11 indicates that a good
fit for the combined force can be obtained from MNC
equations using just free-rolling cornering and straight
line braking data.

Figure 10.  

Figure 11.  

DISCUSSION AND CONCLUSIONS

A model for the combined frictional force at the tire-road
interface based on a modified version of the modified
Nicolas-Comstock equations (MNC) has been presented.
The model, in conjunction with the BNP equations or any
other tire force model, provides a simple algebraic means
of finding the two tire force components over a full range
of combined wheel slip and side slip angles. The only
requirement needed to implement the model is the avail-
ability of the straight line braking and free rolling corner-
ing data for given conditions. By specifying the friction
limits, µxFz and µyFz, the MNC equations yield accept-
able results for the prediction of the combined force at the
tire-road interface.  They can be used for vehicle dynam-
ics simulations and also are useful for accident recon-
struction applications.
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A set of criteria has been presented that which can be
applied to any model of the combined force condition at
the wheel.  Compliance with these criteria ensures that
the model will produce useful results that represent the
combined tire force system.

The Modified Nicolas-Comstock equations offers an
alternative to other methods of predicting the combined
force system such as the Combinator [Schuring, et al.,
1996; Pottinger, et. al., 1998] which recently has been
made available. That method relies on the use of the fric-
tion circle/ellipse and the free rolling cornering and
straight line braking to produce a combined force model.

The expression of the BNP forces in a normalized form
was used and found to be a convenient way of using that
method. Once the normalized form is developed, it can
be multiplied by the appropriate value of µFz to get the
actual force. A three dimensional view of the longitudinal
and transverse tire force components over full ranges of
wheel slip and sideslip angles was presented. This tech-
nique allows for a convenient visual inspection of the
force components when under combined braking and
steering.
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APPENDIX 

The BNP formula is:

where

where the constants used to introduce horizontal and ver-
tical shifts into the data have been omitted with no loss in
generality. Consider the partial derivative of F with
respect to x evaluated at x = 0:

Performing the partial derivative:

which becomes

But

So

Evaluating at x = 0 gives the following result:

F  =   D  [C  (B )]-1sin tan φ

φ  =   (1  -   E ) K x  +   (
E

B
)   (B K x)-1tan
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∂
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|   =   

 x
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-1sin tan φ
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∂
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 (C (B ))-1 -1cos tan tanφ φ

∂
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HG
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KJ

∂
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-1cos tan φ

φ
φ
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∂
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 x
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E
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  (B K x)-1tan
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∂
 

 x
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E  K

1  +   B K x

φ
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