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ABSTRACT

In the vast majority of impacts involving light vehicles,
traditional impulse-momentum collision models can be
used to analyze the mechanics of two colliding vehicles.
However, these models cannot handle the multiple degrees
of freedom associated with articulated (pin-connected)
vehicles. In addition, collisions involving one or two
articulated vehicles may not satisfy the basic assumptions
of these traditional collisions models. In particular, the
assumption that impulses of external forces (such as
tire-road friction) are negligible compared to the impulse
developed over the crash surface may not be valid. The
large masses, long dimensions, the presence of the pinned
joint, or all of these factors, may necessitate special
considerations and more flexible model capabilities.

This paper lists the assumptions that underlie the
application of the principle of impulse and momentum to
a planar collision between rigid bodies. The general impact
equations involving a pair of pinned rigid bodies  are
derived and presented. These equations form a set of linear
algebraic equations that requires a numerical solution. An
example is presented that demonstrates the need to include
the capability of modeling the impulses of forces external
to the intervehicular contact surface. Results of the model,
correlated with data from a controlled experimental
collision, follow the presentation of the equations. Another
example is then presented that illustrates the application of
a velocity constraint to one of the bodies.

INTRODUCTION

A plethora of information is available about the methods
that permit the reconstruction of a wide range of collisions
involving the impact of single (nonarticulated) vehicles

such as cars and light trucks. These methods include those
based on Newton’s Laws (planar impact mechanics) and
those based on the estimation of the energy associated with
residual crush. Accidents involving light vehicles comprise
the majority of automotive collisions so these methods
provide great utility. Methods based on planar impact
mechanics also can be applied to the analysis of collisions
involving larger, heavier vehicles, such as straight trucks,
as long as the underlying assumptions are reasonably well
satisfied. However, analysis of collisions that involve
articulated vehicles (a vehicle comprised of two or more
distinct interconnected bodies coupled by a pin joint), such
as an over-the-road truck tractor and an attached
semitrailer or a light vehicle pulling a semitrailer, might
not meet the underlying assumptions. Therefore, more
sophisticated reconstruction methods may be required to
analyze such collisions.

An analysis of the planar motion of a single body requires
the use of three coordinates, the two rectilinear coordinates
of the mass center and the body’s rotational coordinate. In
engineering mechanics, such a body is said to possess three
degrees of freedom. Two bodies, each with three degrees
of freedom, comprise a single system that has a total of six
degrees of freedom. However, if the two bodies are
interconnected by a pinned joint, the pin constrains the
combined motion. Such a constraint reduces the freedom
of the motion in two directions and so the total degrees of
freedom of the combined, articulated system of two rigid
bodies is reduced from six to four. Hence, four coordinates
are necessary and sufficient to fully describe the position
and orientation of a single articulated vehicle. In addition,
an impact involving one or more articulated vehicles may
not satisfy the same assumptions as for two vehicles each
comprised of a single mass. In particular, the effect of the
frictional forces between some or all of the vehicle tires
and the roadway may not be negligible. The effect of



additional degrees of freedom and the significance of
external impulses must be dealt with explicitly in order to
be able to carry out an accurate analysis of an impact
involving one or more articulated vehicles.

Before considering the general problem of articulated
vehicle impact, it is noted that the planar impact mechanics
model [1] may still be used to reconstruct some collisions
involving one or more articulated vehicles. Indeed, for an
accident where a tractor semitrailer is involved in an
impact with a non-articulated vehicle in which the
velocities of the centers of mass of the tractor and the
semitrailer remain essentially collinear between the onset
of impact to separation (such as shown in Figure 1-a)
impact mechanics of vehicles that are not articulated, or
nonarticulated vehicle impact mechanics, can typically be
used to accurately model the impact. Judgement on the part
of the collision reconstructionist is required to assess the
appropriate applicability of nonarticulated vehicle impact
mechanics for accidents involving one or two articulated
vehicles.

A model is presented in this paper that can be applied to
the impact of a pair of vehicles of which one or both may
be articulated. To a certain extent, the development is a
generalization of the planar impact mechanics model [1].
Both models are based on the direct application of
Newton’s Laws through the use of the principle of impulse
and momentum. However, the model developed here is
more general than the previous development in that it takes
into account the constrained degrees of freedom of pin-
connected bodies. The model was originally presented by
Brach [2] and also provides a more general solution to the
problem as the treatment incorporates a moment impulse
at the intervehicular contact surface as presented in Brach
[3,8]. The more general treatment also introduces
additional modeling flexibility by allowing an externally
applied impulse and/or velocity constraint to one of the
rigid bodies of each of the articulated vehicle pairs. A
value of the moment impulse equal to zero, in combination
with no pin-connected bodies and no application of
external impulses, reduces this model to that presented
previously [1]. 

Accident reconstruction literature concerning the topic of
impact between two vehicles including at least one
articulated vehicle is scant particularly in comparison to
the literature related to the modeling of an impact between
two nonarticulated vehicles. To date, there has not been a
formulation of the CRASH3 ΔV mechanics involving
articulated vehicles. Certain implementations of the

software program SMAC (Simulation Model of
Automobile Collisions) include the capability of modeling
the impact of articulated vehicles. This capability is
highlighted in an article by Leonard, et al. [4] which
considers the capability of the HVE [5] computer program
with comparison of the results of the program to
experimental data. Another version of the SMAC
algorithm, referred to as m-smac [9], has been augmented
to include collisions that involve articulated vehicles. 

An impact model that includes articulated vehicles, which
uses an approach similar to that presented here, was
presented by Steffan and Moser [6]. In that paper, the
authors consider some of the issues that will be presented
later in this paper including the topic of the necessity and
use of external impulses. 

This paper initially presents the assumptions that underlie
the general application of the principle of impulse and
momentum to a planar collision between rigid bodies. Prior
to the development of the impact equations, an example is
presented that demonstrates the need to include the
capability of modeling the impulses of forces external to
the contact surface. An example, which validates the model
using experimental data, follows the presentation of the
equations. An example that shows the use of the
application of a constraint to one of the vehicles is then
presented.

ASSUMPTIONS FOR APPLICATION OF PLANAR
IMPACT MECHANICS TO ARTICULATED
VEHICLES

The application of planar impact mechanics to vehicle
collisions requires that various assumptions about the
nature of the collision be satisfied. These assumptions are:

1. only a single impact occurs between only two of the
articulated rigid bodies (if multiple impacts occur,
each must be analyzed separately),
2. the time duration of intervehicular contact is short
(typically on the order of 100 msec to 200 msec); this
short time duration implies:

a. changes in both linear and angular positions of
all vehicles during the contact duration are small,
and
b. impulses acting on the vehicles due to external
forces (typically tire-pavement frictional forces)
are small in comparison to the impulse due to the
intervehicular force,



3. the location of the resultant intervehicular impulse
is known or can be reasonably estimated,
4. changes in the physical geometry of the masses
(such as due to the crush deformation) either are small
and can be neglected or are known and can be taken
into account, and
5. the effects of any out of (horizontal) plane
dynamics are small.

Relatively high speed [>~ 20 mph (32 km/h) closing
speed] collisions between light vehicles (cars, sport utility
vehicles, pickup trucks, etc.) typically meet all of these
assumptions and planar impact mechanics can be applied
directly. However, collisions involving one or two
articulated vehicles may not meet all of the above
assumptions. The large masses, long dimensions or the
presence of the pinned joint, or all of these, associated with
either of the two masses associated with an articulated
vehicle may require special methods associated with
assumption 2-b. 

As an illustration of this concept, consider a collision in
which a tractor semitrailer with no cargo is traveling
through an intersection. A large pickup truck, traveling at
a high speed, collides with the semitrailer at, and
perpendicular to, its rearmost axle. As a result of the
impact, the lateral forces of the tires of the semitrailer
overcome pavement friction and develop significant lateral
slip such that the semitrailer undergoes a rotational
velocity change. While the semitrailer undergoes this
change in rotational motion, the tractor and its wheels
continue to roll in their preimpact direction without any
significant change in rotational (yaw) velocity or a change
in lateral velocity. Application of the planar impact
mechanics model to a collision such as this will fail to
accurately predict the velocity changes of the masses. The
effect of a large tire-pavement frictional forces such as
those that maintain the heading of the tractor in this
example can be taken into account using a zero-velocity-
change constraint and other special methods introduced in
the following sections.

A better understanding of the magnitude of external
impulses is illustrated in the following example. The
example compares the magnitude of the contact and tire
force impulses for an impact between two light vehicles
with an impact between a light vehicle and a heavy
vehicle. The example illustrates that under certain
circumstances assumption 2-b above is not met. The
impulse of the tire forces generated by a heavy vehicle can
be non-negligible in comparison to the force involved with

the intervehicular impulse. Therefore the assumption of
negligible external impulses may not always be valid.

EXAMPLE 1 - EXTERNAL IMPULSES

Consider the two collision geometries shown in Figure 1-a
and Figure 1-b. Each shows a pair of vehicles at the onset
of contact for an inline head-on collision. The first figure
shows a tractor semitrailer and a sedan and the second
figure shows two sedans. These two collisions are
compared under the conditions of no rebound (zero
restitution), negligible preimpact and postimpact rotational
velocities and a collision duration of about 0.2 seconds.
Table 1 lists the relevant vehicular physical data, initial
and final velocities and the intervehicular impulses from
the analyses. The results in the table are computed using
planar impact mechanics.

The final speeds and the intervehicular impulses generated
for these two collisions were obtained based on the
premise that the assumptions for planar impact mechanics
were satisfied. In particular, the analyses neglected the
impulses generated by any external forces such as tire
ground friction. Suppose now that each of vehicles 2 and
4 were in a locked-wheel skid throughout the entire time of
contact with tire-to-roadway frictional drag coefficients of
f = 0.6. The frictional forces generated by skidding tires of
vehicles 2 and 4 are F2 = 158.9 kN (35,718 lb) and F4 =
14.1 kN (3175 lb), respectively. Assuming that these
forces are constant during the 0.2 seconds of contact, their
impulses are 31.8 kN-s (7144 lb-s) and 2.8 kN-s (635 lb-s),
respectively. Note that the impulse due to the frictional
force for vehicle 2 in collision 1-a, 31.8 kN-s (7144 lb-s),
is about 63% of the intervehicular contact impulse, 50.6
kN-s (11,367.5 lb-s). Further note that the impulse due to
the frictional force for vehicle 4 in collision 1-b, 2.8 kN-s
(635 lb-s), is only about 9% of the impulse due to the
intervehicular force.  G

1 - a

1 - b

Vehicle 1 Vehicle 2

Vehicle 3 Vehicle 4

Figure 1-a Inline head-on collision between a tractor
semitrailer and a sedan
Figure1-b Inline head-on collision between two sedans



The example above illustrates that impulses from forces
external to the contact surface may not be negligible when
analyzing a collision that involves a heavy vehicle. Other
circumstances can arise where the impulse due to a force
other than the intervehicular force may be significant.
Consider a 90E front-to-side collision between two
vehicles with one of the vehicles pulling a semitrailer.
(This collision geometry is considered in a later example.
See Figure 4.) Suppose further that the wheels of the
semitrailer are freely rolling prior to impact and remain in
that condition from the onset of contact to separation. This
implies that the lateral forces generated by the wheels on
the semitrailer do not exceed the frictional limit and the
semitrailer axle does not develop a lateral velocity change.
If the longitudinal velocity of the tow vehicle and the
semitrailer are small, this situation acts, in effect, as though
the semitrailer is constrained in the lateral direction by tire
friction. This and Example 1 illustrate that a need exists for
the articulated vehicle impact model to handle velocity
constraints as well as external impulses.

ARTICULATED VEHICLE IMPACT EQUATIONS

In this section a generalized 4-body impact model is
presented. Figure 2 shows the free body diagrams of the
four masses that comprise two articulated vehicles, entitled
Vehicle A and Vehicle B. Vehicle A consists of Bodies 1
and 3 (shown shaded in the figure) and Vehicle B consists
of bodies 2 and 4. (A larger version of Figure 2 is included
at the end of the paper for clarity.) In addition to the
various impulses required for the analysis, the figure also
shows the variables and the coordinate systems associated
with the model development. The x-y coordinate system is
fixed to the ground and the n-t coordinate system is at an
angle Γ relative to the x-y system. 

Dynamic contact is between Body 1 and Body 2 and
creates an impulse P with components Px and Py and a
moment impulse, M. Bodies 1 and 3 are interconnected by
a frictionless pin that transmits an impulse R with
components Rx and Ry. Bodies 2 and 4 are interconnected
by a frictionless pin that transmits an impulse Q with
components Qx and Qy. Allowance is made for an external
impulse C3, applied to Body 3 and an external impulse C4,
applied to Body 4. Impulses C3 and C4 are shown in the
figure using their x and y components. Impulses C3 and C4

are arbitrary (they can be zero) and are developed by
placing final velocity constraints at respective locations on
Bodies 3 and 4. 

The model requires that the contact take place between
Bodies 1 and 2 only. However, this requirement does not
imply that either Body 1 and 2 necessarily represent a tow
vehicle. In this way the model can accommodate the
impact between the two tractors, the two semitrailers, or
between the tractor of one tractor semitrailer combination
and the semitrailer of the other combination.

In Figure 2 the variables P, Q, R, C3 and C4 represent the
impulses of the forces that act at those locations, not the
forces themselves. Similarly, M represents the moment
impulse that can act at the contact surface. The inclusion of
the moment impulse at the contact surface permits the
modeling of, for example, the structural engagement over
the intervehicular contact surface that can transmit angular
momentum from one vehicle to the other. While
experience indicates that a non-zero contact moment is not
necessarily a common occurrence during vehicular
collisions, the inclusion of the moment impulse in the
model provides for greater generality.

As will be shown later, a moment coefficient, e!, is needed
in the formulation of the problem to relate the final angular
velocities of the vehicles [3, 8]. The impulse P represents
the intervehicular impulse that acts at a point on the
contact surface, C, called the impact center. This point
represents the spatial and temporal average of the location
of the application of the impulse P during contact between
the two bodies. Determination of the location of the
impulse center requires judgement by the user in
applications of this model.

The orientations of the bodies relative to the ground at the
time of impact are indicated by the heading angles θ1, θ2,
θ3, and θ4, all defined relative to the x-y coordinate axes.
All impulses are located relative to the mass center of each
body and heading orientation by a distance, d, and an angle
n. For example, the impulse P and the impact center are
located relative to the centers of mass of Bodies 1 and 3 by
distances d1 and d3, respectively, acting at angles n1 and
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Figure 2 Free Body Diagrams for the four masses in a
collision between two articulated vehicles



n3, respectively. The location of the hitch pin is defined on
Body 1 by d1R and n1R and on Body 3 by d3R and n3R. The
hitch pin location is defined on Body 2 with d2Q and n2Q

and on Body 4 with d4Q and n4Q. The external impulses C3

and C4 act on Bodies 3 and 4 at distances d3C and d4C from
the center of mass, at angles n3C and n4C, respectively. A
normal and tangential coordinate system, (n, t), is
referenced to the crush surface and is oriented with respect
to the x-y coordinate system by the angle Γ. Bodies 1
through 4 have mass m1, m2, m3, and m4, and rotational yaw
inertias I1, I2, I3, and I4, respectively.

Before proceeding with the development of the equations
that govern the impact between two articulated vehicles,
some additional discussion of the impulses shown on the
free body diagrams is required. The impulses C3 and C4 are
included in the free body diagrams of Bodies 3 and 4,
respectively, and are intended to be externally applied
impulses, remote from the intervehicular contact impulse,
P. The impulses Q and R are the impulses generated at the
hitch pins that maintain a translational velocity constraint
at each pin. The constraint is imposed such that the final
velocity components of the two pinned bodies at each hitch
point are identical.

Therefore, the components of these impulses, Rx and Ry for
Bodies 1 and 3 and Qx and Qy for Bodies 2 and 4, are
shown in the figure acting equal and opposite on each pair
of bodies. The components of the intervehicular impulse,
Px and Py, are shown on Bodies 1 and 3. The lines of action
of these impulse components are the same on each body
but the direction of the action of each is opposite,
consistent with Newton’s Third Law. Similarly, the
moment impulse M acting along the contact surface is also
shown acting on both Bodies 1 and 2 with opposite
directions.

The development that follows is a direct application of the
principle of impulse and momentum [7] to each body of
the system of pairs of (pinned) rigid bodies. This principle
states that the change in (linear and angular) momentum of
a rigid body is equal to the sum of the external (linear and
angular) impulses acting on that body. The application of
the principle initially produces twelve scalar equations,
three for each of the four masses.

As will be seen, the development of the equations involves
more than twelve unknowns and additional equations are
needed to solve the problem. Consistent with the notation
used in the formulation of the planar impact mechanics
solution, the variables associated with the preimpact

velocities are shown in lower case, such as v3x, and the
variables associated with the postimpact velocities are
shown in upper case, such as V2y. All of the variables used
in these equations are listed in a table in Appendix A. The
equations are also repeated in Appendix A for
convenience. The impulse and momentum equations are as
follows:

For Body 1:

(1)1 1 1( ) x xx xm V v P R− = +

1 1 1( ) y yy ym V v P R− = +
(2)

(3)

( ) sin( )1 1 1 1 1 1
cos( )1 1 1

sin( )1 1 1
cos( )1 1 1

I M d Px
d Py
d RR R x
d RR R y

ω θ ϕ

θ ϕ

θ ϕ

θ ϕ

Ω − = + + −

+ −

+ +

+

For Body 2:

(4)2 2 2( ) x xx xm V v P Q− = − −

(5)2 2 2( )y y y ym V v P Q− = − −

(6)

2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

( ) sin( )
cos( )
sin( )
cos( )

x

y

xQ Q

yQ Q

I M d P
d P
d Q
d Q

ω θ ϕ
θ ϕ
θ ϕ
θ ϕ

Ω − = − + + −
+ −
+ +

+

For Body 3:

(7)3 3 3 3 3( ) cosx x xm V v R C α− = − +

(8)3 3 3 3 3( ) siny y ym V v R C α− = − +

(9)

3 3 3 3 3 3

3 3 3

3 3 3 3 3

3 3 3 3 3

( ) sin( )
cos( )
sin( ) cos
cos( ) sin

xR R

yR R

C C

C C

I d R
d R
d C
d C

ω θ ϕ
θ ϕ
θ ϕ α
θ ϕ α

+

Ω − = − + +
+

+ −
+

For Body 4:

(10)4 4 4 4 4( ) cosxx xm V v Q C α− = − +



(11)4 4 4 4 4( ) sinyy ym V v Q C α− = +

(12)

4 4 4 4 4 4

4 4 4

4 4 4 4 4

4 4 4 4 4

( ) sin( )
cos( )
sin( ) cos
cos( ) sin

xQ Q

yQ Q

C C

C C

I d Q
d Q
d C
d C

ω θ ϕ
θ ϕ
θ ϕ α
θ ϕ α

−

Ω − = − + +

+

+ +
+

Counting equations and unknowns gives twelve equations,
1 through 12, and twenty-one unknowns: V1x, V1y, V2x, V2y,
V3x, V3y, V4x, V4y, Ω1, Ω2, Ω3, Ω4, M, Px, Py, Rx, Ry, Qx, Qy,
C3, and C4. For the general problem that involves all of the
unknowns, nine more equations are needed to make the
problem tractable. Note that while the general problem
involves the twenty-one unknowns listed above, most
problems will likely involve only a subset of these. For
example, if one of the vehicles is not articulated, three of
the unknown velocities and the associated hitch impulses
do not appear in the formulation. 

The remaining nine equations required in the general
formulation are introduced from four sources:

1) the consideration of the normal and tangential
contact processes over the intervehicular contact
surface, 
2) the existence of a moment impulse over the
intervehicular contact surface,
3) the constraints imposed on the system at the hitch,
and 
4) the velocity constraints, if any, imposed on Bodies
3 and 4. 

Impulses Rx, Ry, Qx, Qy, C3, and C4 are related to the
velocity constraints, and are determined through the
imposition of constraint equations. 

A thirteenth equation is obtained from the impulse ratio
coefficient, μ, defined previously [1] as the ratio of the
tangential to normal impulse components. This is:

(13a)t nP Pμ=

or, using the x-y components of the impulses,

(13b)cos sin ( sin cos )y x y xP P P PμΓ− Γ = Γ+ Γ

Another equation is obtained from the definition of the
coefficient of restitution, e, in the normal direction, n (as
defined by Γ), at the impact center. The coefficient of
restitution is defined as the ratio of the relative normal
velocity at the impact center (shown as point C in Figure

2) at the end of contact to the relative normal velocity at
the impact center at the beginning of contact:

(14)Crn

Crn

Ve v=−

where

(15)

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

[ sin( ) ]cos
[ cos( ) ]sin

[ sin( ) ]cos
[ cos( ) ]sin

Crn x

y

x

y

V V d
V d

V d
V d

θ ϕ
θ ϕ

θ ϕ
θ ϕ

= − + + Ω Γ +

− + Ω Γ −

− + Ω Γ −

+ + Ω Γ

(16)

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

[ sin( ) ]cos
[ cos( ) ]sin

[ sin( ) ]cos
[ cos( ) ]sin

Crn x

y

x

y

v v d
v d

v d
v d

θ ϕ ω
θ ϕ ω

θ ϕ ω
θ ϕ ω

= + + Γ +

− + Γ −

− + Γ −

+ + Γ

The moment restitution at the surface [3,8] leads to the
following equation:

(17a)
2 1' (1 ')( )e M e I= − + Ω − Ω

where

(17b)1 2

1 2

I II I I= +

Note that for e! = 0, the vehicles will have the same
postimpact angular velocity, that is, Ω1 = Ω2. This
condition corresponds to a perfectly inelastic angular
impact, and is independent of the coefficient of restitution,
e, defined in Eq. 14. For e! = -1, the moment impulse M is
zero and corresponds to a rigid body collision in which the
moment impulse can be neglected.

Two constraints are imposed on the system that require
that the hitch point for each of the two pairs of bodies have
the same final linear velocity components. It is assumed
that no impulsive moments act at the hitch location. The
velocity constraint imposed on one pair of masses yields
two equations, one for each velocity component along the
x-y coordinate system. This gives a total of four more
equations, two each for each vehicle. The hitch constraint
is imposed on the postimpact velocities. (Note that to be
physically realistic, compatible initial velocities must be
used that satisfy the pin constraints.)

For Vehicle A at the hitch point, R, in the x-direction:



(18)
1 1 1 1 1

3 3 3 3 3

sin( )
sin( )

x R R

x R R

V d
V d

θ ϕ
θ ϕ

− + Ω =
+ + Ω

For Vehicle A at the hitch point, R, in the y-direction:

(19)
1 1 1 1 1

3 3 3 3 3

cos( )
cos( )

y R R

y R R

V d
V d

θ ϕ
θ ϕ

+ + Ω =

− + Ω

For Vehicle B at the hitch point, Q, in the x-direction:

(20)
2 2 2 2 2

4 4 4 4 4

sin( )
sin( )

x Q Q

x Q Q

V d
V d

θ ϕ
θ ϕ

+ + Ω =

− + Ω

For Vehicle B at the hitch point, Q, in the y-direction:

(21)
4

2 2 2 2 2

4 4 4 4

cos

cos

( )
( )

y Q Q

y Q Q

V d
V d

θ ϕ
θ ϕ

− + Ω =

+ + Ω

As described previously, circumstances in a collision
involving an articulated vehicle may require that the final
velocity of one of the bodies be constrained to a certain
direction due to interactions with other environmental
objects (such as a curb, friction, etc.). The development of
the impact model therefore includes additional impulses,
C3 and C4, to facilitate the inclusion of constraints on the
velocities of Bodies 3 and 4. Of course, these constraints
may not exist or may not be applied to all problems.

Note that one restriction of the development of the model
is that the location of a velocity constraint and the impact
center cannot be the same. For example, consider the
impact between the tractor of one tractor semitrailer
combination into the semitrailer of another tractor
semitrailer combination. In this case, Body 1 of Vehicle A
is the tractor involved in the impact, with Body 3 assigned
to the semitrailer. Body 2 (the other body involved in the
impact) will be assigned as the semitrailer of Vehicle B,
with Body 4 as the tractor of Vehicle B. Since the impact
is between Body 1 and Body 2, a velocity constraint can be
applied to the semitrailer of Vehicle A (Body 3) or the
tractor of Vehicle B (Body 4).

While the model can be applied to two single vehicles (m3

= m4 = 0 and I3 = I4 = 0) the development dictates that the
model cannot accommodate velocity constraints applied to
these two single vehicles. If the circumstances of the
collision require such a need, the hitch impulses R and Q

are permitted to be specified and can be used for the
purpose of achieving a velocity constraint depending on
the implementation of the solution.

Figure 3 shows the geometric configuration of constraint
velocity, Figure 3(a), and the constraint impulse, Figure
3(b). The variables in the figure are given a general
subscript, i, which can take on the value 3 or 4 depending
on the body to which the constraint applies. The angle αi is
defined in the x-y coordinate system as shown. The
velocity constraint, from Figure 3(a), takes the form:

(22)cos sin 0, 3,4ix i iy iV V iα α+ = =
The direction of the constraint impulse at the location
where the velocity constraint is imposed acts perpendicular
to the direction defined by αi as shown in Figure 3(b).
Expanding this expression for each of the Bodies 3 and 4
with the appropriate kinematics gives:

 (23)
3 3 3 3 3 3

3 3 3 3 3 3

[ sin( ) ]cos
[ cos( ) ]sin 0

x C C

y C C

V d
V d

θ ϕ α
θ ϕ α

+ + Ω +
− + Ω =

 (24)
4 4 4 4 4 4

4 4 4 4 4 4

[ sin( ) ]cos
[ cos( ) ]sin 0

x C C

y C C

V d
V d

θ ϕ α
θ ϕ α

− + Ω +
+ + Ω =

Figure 3(b) shows the direction of the components of the
impulse that act to restrict the velocity to the direction
specified by αi.

In addition to the original twelve equations from impulse
momentum, an inventory of the equations now gives the
additional nine equations, 13, 14, 17, 18, 19, 20, 21, 23,
and 24 bringing the total number of equations to twenty-
one. For the full complement of masses and conditions, the

iα iα

Ci

Cix

Ciy

Viy

Vix

iy iV  sin α 

 ix iV  cos α

(a) (b)
Figure 3 Geometry of the velocity constraints



number of equations equals the number of unknowns and
the problem can be solved. Additional complexities exist
due to the various configurations of vehicles and
combination of conditions that may be required in the
reconstruction of a collision. For example, if there are no
velocity constraints (C3 = C4 = 0), then the total number of
equations and unknowns is reduced by two and becomes
nineteen.

The equations are algebraic and linear and the solution can
be implemented in a computer program. Such an
implementation permits the analysis of collisions of
various geometries involving combinations of articulated
and nonarticulated vehicles. Several examples are now
presented to demonstrate the utility of the model.

Equations 1 through 24 (with the exception of Eqs 15, 16
and 22) provide a system of linear algebraic equations with
the twenty-one unknown final velocity components and
impulse components listed above. If the initial velocities,
impact coefficients, vehicle physical properties, body
configurations and constraint velocities are known, the
equations can be used to solve for the unknown final
velocity components and impulses for a given set of initial
velocities. If only one final velocity constraint exists, the
number of equations and unknowns is reduced by one;
with no constraints, the number reduces to nineteen. Under
any circumstances, a numerical solution is necessary. As
presented previously [1], a critical value of the impulse
ratio μ = μ0 corresponds to the condition that the relative
tangential velocity between the bodies in contact ceases
prior to separation. 

VALIDATION OF THE ARTICULATED VEHICLE
IMPACT EQUATIONS USING EXPERIMENTAL
DATA

It is instructional to examine the equations presented above
relative to experimental data. Data used for model
validation by Steffan and Moser [6] is also used here [10].
In the staged collision, an Alfa Romeo 164 sedan pulling
a Hobby - 495 travel trailer is impacted on the right front
door by the front of an Opel Ascona C 4-door sedan.
Figure 4 shows the relative locations and orientations of
the vehicles at the onset of contact. Table 2 lists some of
the physical parameters of the test vehicles and also some
of the test values. Figure 5 shows the two vehicles at the
onset of contact and depicts several of the model
parameters that are needed for the analysis.

The postimpact speeds from the test were available for the
Alfa Romeo and the Ascona only [10]. No data was
reported for the travel trailer. Therefore the comparison
between the test speeds and the speeds predicted by the
analysis using the articulated vehicle impact model will be
done for Bodies 1 and 2 only. Comparison will be made
between the preimpact and postimpact kinetic energy of
the system. The graphs in Figures 6a and 6b show the
magnitude of the velocity components of the center of
mass vx, vy, v, and the rotational velocity of the vehicles
determined from the test data as a function of time for the
Alfa Romeo and the Ascona, respectively. The data
indicate that the impulse duration was approximately 0.15
seconds. The change of the velocity of the center of mass
of the Alfa Romeo, ΔV, is about 22.5 kph (14.0 mph) with
individual values of the velocity changes of Δvx = 6.5 kph
(4.0 mph) and Δvy = 21.5 kph (13.4 mph). The change of

Body 1
impact

Body 3
impact

Body 2
impact

Body 1
rest

Body 3
rest

Body 2
rest

Figure 4 Diagram of the relative positions and orientations of
the test vehicles at the onset of impact and at rest
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Figure 5 Diagram that shows the vehicles at the onset of contact,
the location of the impact center and several of the model
parameters needed for the analysis



the velocity of the center of mass of the Opel Ascona, ΔV,
is about 34.3 kph (21.3 mph) with individual values of the
velocity changes of Δvx = 7.5 kph (4.7 mph) and Δvy = 33.5
kph (20.8 mph).

Sufficient information from the experimental data is
present to determine the coefficient of restitution for the
collision. Using the y-direction as shown in Figure 5 as the
positive normal direction, the value of e can be determined
from the following equation: 

(25)1 1 2 2

1 1 2 2

c aCrn n n
c aCrn n n

V V d V de v v d v dω ω
+ Ω − + Ω

− = =
+ − +

For values of V1n = 21.5 kph (13.4 mph), V2n = 11.5 kph
(7.1 mph), v1n = 0.0 kph, v2n = 45.0 kph (28.0 mph), Ω1 =
0.55 rad/s, Ω2 = -2.2 rad/s, ω1 = 0.0 rad/s, and ω2 = 0.0
rad/s, the coefficient of restitution for the collision is
determined to be approximately e = 0.2. Therefore, the

analysis performed to compare the model with the test data
was conducted using e = 0.2 and μ = μ0. For this collision
the moment impulse coefficient is set equal to negative
one, er = -1, which makes the moment at the contact
surface zero, M = 0. Table 3 shows the comparison of the
experimental data with the results of the analysis. Figure 7
(at the end of the paper) depicts the spreadsheet used for
the analysis. The numerical results in the figure are for the
analysis with e = 0.2 and μ = μ0. No velocity constraint
was used in this analysis.

The data in Table 3 show good agreement between the
experimental results and the analysis. The ΔV of the center
of mass of the Alfa Romeo was 22.5 kph (14.0 mph)
experimentally with the analysis yielding a value of 23.2
kph (14.4 mph), an error of 3.1%. The ΔV of the center of
mass of the Opel Ascona was 34.3 kph (21.3 mph)
experimentally with the analysis yielding a value of 34.1
kph (21.2 mph), an error of 0.6%. According to the
experimental data, the system lost 46.4% of its initial
energy. The analysis predicts a 43.2% energy loss. 

A comparison could not be made between the experimental
and analytical results for the semitrailer as no experimental
results were reported. The good agreement between the
analytical results with the experimental data for the Alfa
Romeo and the Opel Ascona without the use of a velocity
constraint on the semitrailer indicates that a velocity
constraint is not needed. However, an analysis of the
collision that included a velocity constraint perpendicular
to the longitudinal axis of the semitrailer applied at the
center of mass using the initial conditions reported in the
experimental data was done. The results of that analysis
show that the ΔVs of the Opel and the Alfa Romeo change
little in magnitude and direction but the angular velocities
of the vehicles differ significantly from the experimental
data. In particular, the angular velocity of the Alfa Romeo
increases by about 130%.

No significant refinement of the analysis was performed to
obtain the numbers that were used for comparison. An
improvement in the match between the analysis and the
experimental data might be obtained with small changes in
the location of the impact center.   G

Another example is provided that illustrates the use of the
capability to impose a velocity constraint during the impact
analysis.
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Figure 6a Data showing the velocity of the mass center of the
Alfa Romeo and its angular velocity as a function of time with
contact initiated at time = 0 seconds
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EXAMPLE 2 - VELOCITY CONSTRAINT

This example presents the analysis of the speed changes
associated with an impact between a tractor semitrailer and
a full-size pickup truck where the velocity constraint is
used. Consider the impact geometry depicted in Figure 8.
The figure shows a pickup truck and a tractor semitrailer
at the onset of contact between the front of the pickup
truck and the right front wheel of the tractor. Table 4 lists
the relevant vehicular physical data, initial and final
velocities and the impulse required to impose the velocity
constraint determined in the analysis. The impact is
modeled for e = 0.2 and for μ = μ0. 

Note that the tractor semitrailer is located immediately
adjacent to a utility pole as shown in Figure 8. It is
assumed that the utility pole is rigid and does not fail
during the impact and therefore acts to restrict the
postimpact velocity of the contact point between the
semitrailer and the pole to have a zero final velocity in the
y-direction. Therefore, a velocity constraint will be
imposed on this point of the semitrailer as part of the
impact analysis. Note that the location of the utility pole,
and therefore the point of application of the constraint, was
selected here as collinear with the y-axis and the center of
mass of the semitrailer. This is for simplicity and to
facilitate the interpretation of the results. 

The analysis leads to final velocity of the center of mass of
the semitrailer in the y-direction, V3y, is zero. This is
consistent with the velocity constraint imposed on the
semitrailer located at a point along the y-axis collinear with
the center of mass of the semitrailer. For this geometry
both the point of application of the constraint and the
center of mass of the semitrailer will have the same
postimpact velocity in the y-direction. The results of the
analysis also provide the magnitude of the impulse applied
by the utility pole to the side of the semitrailer to impose

the velocity constraint. In this case the impulse is 5874 N-s
(1320.5 lb-s).    G

CONCLUSIONS

It has been shown that collisions involving one or more
articulated vehicles, as well as some collisions involving
non-articulated vehicles that fail to meet the underlying
assumptions of the planar impact mechanics model, require
additional modeling flexibility to accurately reconstruct
vehicle speeds. This paper demonstrates that the planar
impact mechanics model can be extended to provide a
more general solution to the impact problem including the
capability to introduce external impulses and/or velocity
constraints to analyze these collisions.

Note that different combinations of the number of bodies
and different combinations of choices of known and
unknown impulses and final velocity constraints create a
flexibility in the model that can be exploited to cover a
wide variety of different reconstruction applications. The
model presented here reduces to the single body planar
impact mechanics model when the semitrailers are
eliminated, no external impulses are applied and no
moment is present at the contact surface.
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APPENDIX A - THE IMPACT EQUATIONS

The twenty-one equations formulated for the impact for
articulated vehicles presented in this paper can be solved
for the twenty-one unknowns of the problem: V1x, V1y, V2x,
V2y, V3x, V3y, V4x, V4y, Ω1, Ω2, Ω3, Ω4, M, Px, Py, Rx, Ry, Qx,
Qy, C3, and C4. Prior to implementing a solution, the
equations are put into matrix form to facilitate a solution
through numerical means. The model can be applied to a
wide variety of collision geometries ranging from the
impact of two nonarticulated vehicles to two articulated
vehicles. Each of the configurations may include velocity
constraints and/or externally applied impulses. Each

distinct vehicular configuration and combination of
conditions leads to a different set of unknowns and a
different set of equations to be solved for those unknowns.

Before presenting the equations, the variables that appear
in the equations and the notation used in their development
are listed. 

Notation, Subscripts:

n, t normal & tangential axes (Fig 2)
x, y ground based axes (Fig 2)
1, 2 body number
3, 4 body number
C impact center, velocity constraint
Q external impulse Q
r relative
R external impulse R

Notation, Variables:

C impulse (velocity constraint)
d1, d2 distances (Fig 2)
d3, d4 distances(Fig 2)
e coefficient of restitution
eN moment coefficient
I yaw moment of inertia
m mass of body
M moment impulse at impact center
P impulse at impact center
Q impulse at hitch for Bodies 2 and 4
R impulse at hitch for Bodies 1 and 3
v initial velocity
V final velocity
ΔV velocity change
α constraint angle
Γ crush surface angle
μ impulse ratio
ω initial angular velocity
Ω final angular velocity
n angle orientation of impulse of velocity constraint
θ angular orientation of body

First, the twenty-one equations are repeated here. The
equation numbers are sequential for convenience.

(A1)1 1 1( )x x x xm V v P R− = +

(A2)1 1 1( )y y y ym V v P R− = +
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TABLES

Table 1 Data from the collision analysis in Example 1

Collision Geometry for Figure 1-a
Vehicle 1 Vehicle 2

Mass (weight) 1800 kg (3969 lb) 27,000 kg (59,530 lb)
Initial Speed 15.0 m/s (33.6 mph) -15.0 m/s (-33.6 mph)
Final Speed -13.1 m/s (-29.4 mph) -13.1 m/s (-29.4 mph)
Intervehicular Impulse -50.7 kN-s (-11,400 lb-s) 50.7 kN-s (11,400 lb-s)

Collision Geometry for Figure 1-a
Vehicle 3 Vehicle 4

Mass (weight) 1800 kg (3969 lb) 2400 kg (5292 lb)
Initial Speed 15.0 m/s (33.6 mph) -15.0 m/s (-33.6 mph)
Final Speed -2.14 m/s (-4.8 mph) -2.14 m/s (-4.8 mph)
Intervehicular Impulse -30.9 kN-s (-6950 lb-s) 30.9 kN-s (6950 lb-s)

Table 2 Vehicle input physical parameters for model validation

Vehicle A - Body 1 Vehicle A - Body 3 Vehicle B - Body 2
Weight 13.7 kN (3087.5 lb) 9.8 kN (2196.6 lb) 10.4 kN (2337.7 lb)
Yaw moment 2152.0 kg-m2 2727.0 kg-m2 1510.0 kg-m2 
of inertia (1587.2 ft-lb-s2) (2011.3 t-lb-s2) (1113.7 t-lb-s2)

Wheelbase 2.7 m (8.7 ft) 3.5 m (11.5 ft) 2.6 m (8.4 ft)
[Hitch to axle]

Initial Speed 22.0 kph (13.7 mph) 22.0 kph (13.7 mph) 45.0 kph (28.0 mph)

Table 3 Comparison of the test results with analytical results
Analysis with

Alfa Romeo 164 Test Results e = 0.2 and μ = μ0

 ΔVx of CG -6.5 kph (-4.0 mph) -4.4 kph (-2.7 mph)
 ΔVy of CG 21.5 kph (13.4 mph) 22.8 kph (14.2 mph)
*ΔV* of CG 22.5 kph (14.0 mph) 23.2 kph (14.4 mph)
PDOF Not available 74.5E

Opel Ascona C
ΔVx of CG 7.5 kph (4.7 mph) 9.7 kph (6.0 mph)
ΔVy of CG -33.5 kph (-20.8 mph) -32.7 kph (-20.3 mph)
*ΔV* of CG 34.3 kph (21.3 mph) 34.1 kph (21.2 mph)
PDOF Not available -16.5E

System
Preimpact Energy 133.3 kJ (98.3×103 ft-lb) 133.3 kJ (98.3×103 ft-lb)
Postimpact Energy 71.5 kJ (52.7×103 ft-lb) 75.7 kJ (55.8×103 ft-lb)
Energy Loss 46.4% 43.2%



TABLES (cont.)

FIGURES

Table 4 Vehicle input and output parameters for Example 2

Vehicle A - Body 1 Vehicle A - Body 3 Vehicle B - Body 2
   Tractor    Semitrailer    Pickup Truck

Mass 6800.8 kg (466 lb-s2/ft) 11,324.9 kg (776 lb-s2/ft) 2262.1 kg (155 lb-s2/ft)
Yaw Inertia 6779.1 N-m-s2 20,337.3 N-m-s2 4880.9 N-m-s2

(5000 ft-lb-s2) (15,000 ft-lb-s2) (3600 ft-lb-s2)
Initial Velocity (cg) 0.0 kph 0.0 kph 80.5 kph (50 mph)
Final Velocity (cg) 4.6 m/s (10.3 mph) 0.14 m/s (0.31 mph) 11.2 m/s (25.1 mph)
Magnitude of the N/A 5874.0 N-s (1320.5 lb-s) N/A
impulse to meet the
velocity constraint
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Figure 2 Free Body Diagrams for the four masses in a collision between two articulated vehicles



FIGURES (cont.)

5/5/06 6.3
INPUT:

  Body 1: m1: 1400.00 kg I1: 2,152.0 N-m-s^2 θ1: 181.00 deg v1x: 6.25 m/s v3x: 6.25 m/s

  Body 3: m3: 996.00 kg I3: 2,727.0 N-m-s^2 θ3: 181.00 deg v1y: 0.11 m/s v3y: 0.11 m/s

  Body 2: m2: 1060.00 kg I2: 1,510.0 N-m-s^2 θ2: 90.00 deg v2x: 0.00 m/s v4x: 0.00 m/s

  Body 4: m4: 0.00 kg I4: 0.0 N-m-s^2 θ4: 0.00 deg v2y: 12.78 m/s v4y: 0.00 m/s

9.80665 d1: 0.89 m d1R: 2.51 m φ1: -73.29 deg φ1R: 0.00 deg ω1: 0.0 °/s
1.466666667 d3C: 0.00 m d3R: 3.25 m φ3C: 0.00 deg φ3R: 0.00 deg ω3: 0.0 °/s

d2: 1.84 m d2Q: 0.00 m φ2: 8.29 deg φ2Q: 0.00 deg ω2: 0.0 °/s
SI d4C: 0.00 m d4Q: 0.00 m φ4C: 0.00 deg φ4Q: 0.00 deg ω4: 0.0 °/s

α3: none deg Rx: unknown N-s Γ 90.00 deg

α4: none deg Ry: unknown N-s e 0.20
Qx: unknown N-s μ 100.00 % μ0

Qy: unknown N-s e' -1 e' = -1 means that the
moment impulse is zero

OUTPUT:

Initial Velocities:  v1x: 6.25 m/s v1y: 0.11 m/s ω1: 0.00 °/s v1: 6.25 m/s 22.50 km/hr

 v3x: 6.25 m/s v3y: 0.11 m/s ω3: 0.00 °/s v3: 6.25 m/s 22.50 km/hr

 v2x: 0.00 m/s v2y: 12.78 m/s ω2: 0.00 °/s v2: 12.78 m/s 46.00 km/hr

 v4x: 0.00 m/s v4y: 0.00 m/s ω4: 0.00 °/s v4: 0.00 m/s 0.00 km/hr

Final Velocities:  V1x: 5.02 m/s V1y: 6.43 m/s Ω1: 57.43 °/s V1: 8.16 m/s 29.37 km/hr

 V3x: 5.12 m/s V3y: 0.88 m/s Ω3: 53.58 °/s V3: 5.19 m/s 18.69 km/hr

 V2x: 2.69 m/s V2y: 3.71 m/s Ω2: -100.09 °/s V2: 4.58 m/s 16.48 km/hr

 V4x: 0.00 m/s V4y: 0.00 m/s Ω4: 0.00 °/s V4: 0.00 m/s 0.00 km/hr

Impulse Values: Rx: 1,128.2 N-s Ry: -765.1 N-s R: 1,363.2 N-s ΔV1: 6.44 m/s 23.19 km/hr

Px: -2,849.9 N-s Py: 9,616.6 N-s P: 10,030.0 N-s ΔV2: 9.46 m/s 34.06 km/hr

PN: 9,616.6 N-s PT: 2,849.9 N-s M: 0.0 N-m-s ΔV3: 1.37 m/s 4.93 km/hr

Qx: 0.0 N-s Qy: 0.0 N-s Q: 0.0 N-s ΔV4: 0.00 m/s 0.00 km/hr

Energy Values:

Initial energy of Veh A TIA: 46,796.9 N-m μ : 0.296 No Sliding at Separation

Final energy of Veh A TFA: 62,283.6 N-m μ0: 0.296

Initial energy of Veh B TIB: 86,537.0 N-m e: 0.20

Final energy of Veh B TFB: 13,412.9 N-m e': -1.00

Initial System Kinetic Energy: 133,333.8 N-m
Final System Kinetic Energy: 75,696.5 N-m

System Energy Loss: 57,637.3 N-m
Percent System Energy Loss: 43.2 %

Analysis of the Impact of Articulated Vehicles

If known, enter the external pin impulse for 
Vehicles A and B (R and Q, respectively).  

Otherwise type "unknown" (lowercase w/o "").

Vehicle A { Alfa Romeo

Hobby

Vehicle B { Opel Ascona C

Semitrailer 2

If there is a known velocity constraint for rigid body 
3 and/or 4, enter the angles (α3, α4). Otherwise, 

enter "none" (lowercase w/o "").

RUN impactAV

Unit Conversion

Figure 7 Spreadsheet results for model validation with e = 0.2 and μ = μ0


