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Abstract:   Residual damage caused during a collision
has been related through the use of crush energy models
and impact mechanics directly to the collision energy
loss and vehicle velocity changes, ΔV1 and ΔV2. The
simplest and most popular form of this crush energy
relationship is a linear one and has been exploited for
the purpose of accident reconstruction in the well known
CRASH3 crush energy algorithm. Nonlinear forms of
the relationship between residual crush and collision
energy also have been developed. Speed reconstruction
models that use the CRASH3 algorithm use point mass
impact mechanics, a concept of equivalent mass, visual
estimation of the Principle Direction of Force (PDOF)
and a tangential correction factor to relate total crush
energy to the collision ΔV values. Most algorithms also
are based on an assumption of a common velocity at the
contact area between the vehicles. The use of point mass
mechanics, equivalent mass, a tangential correction
factor and zero restitution are unnecessarily restrictive
and their use reduces the accuracy of the crush energy
methods in crash reconstruction.

This paper shows that planar impact mechanics
can be adapted to significantly improve the rigor of
using residual crush for crash reconstruction. Planar
impact mechanics models the impulses and the changes
in momentum of vehicles colliding in a plane including
restitution of the collision at the intervehicular contact
surface. Two impact coefficients are used, the (normal)
coefficient of restitution and the (tangential) impulse
ratio. The work of the normal component and tangential
component of the crash impulse vector are individually
associated with the crush energy and with the tangential
energy loss and to each vehicle’s ΔV. This work-energy
association is referred to as partitioning of the collision
energy loss. Partitioning is necessary in order to adapt

planar impact mechanics to the CRASH3 measurement
protocol. The paper also covers the proper approach to
take restitution into account, both as it occurs in the
barrier tests to determine each vehicle’s crush stiffness
coefficients and as it occurs in the impact between two
vehicles. Data from oblique frontal barrier crash tests by
Struble-Welsh Engineering are used to assess the use of
planar impact mechanics and the partitioning of energy
loss into crush energy and tangential energy. The
process of using crush energy in reconstructions is
discussed.

INTRODUCTION

CRASH3 (Calspan Reconstruction of Accident
Speeds on the Highway) is an acronym used frequently
in the field of accident reconstruction and represents a
method for reconstructing the initial speeds of a pair of
colliding vehicles based on their postimpact travel
(distance from impact positions to their rest positions)
and measurements of their residual crush. The CRASH3
method contains the following steps:
 P vehicles’ postimpact speeds (speeds at separation)
are estimated using the postimpact travel using an
approximate method developed by Marquardt,
 P the energy expended in the collision, EC, is
estimated using a method developed by Campbell and
modified by Prasad (called here the crush energy
algorithm),
 P using point mass impact mechanics to calculate
each vehicles’ ΔV, CRASH3 combines the postimpact
speeds and the crush energy to estimate the preimpact
speeds. The analytical foundation used for the
calculation of ΔV by CRASH3 contains several
simplifying assumptions, including:



  1. the use of common velocity conditions,
  2. point mass impact dynamics and equivalent mass,
  3. energy correction factor for tangential contact
      effects.
This paper discusses and presents the use of planar
impact mechanics [1] to provide a more rigorous and
accurate approach to combine the crush energy
algorithm to the speed changes of the vehicles. It relaxes
the above three assumptions (see Appendix A). The
proposed approach is as follows:
 P Crush energy from the CRASH3 crush energy
algorithm is equated to the work of the normal
component of the contact impulse from planar impact
mechanics.
 P The work of the tangential component of planar
impact mechanics is used in place of the CRASH3
tangential correction factor.
 P Each vehicle’s ΔV is calculated with the appropriate
value of the coefficient of restitution and impulse ratio
using planar impact mechanics.

The paper also compares some recent test results [2] to
illustrate the details of this approach. Comparisons show
good agreement with theory. 

Three sequential crabbed crash tests [2] of a
single 2002 Chevrolet Cavalier were carried out at
speeds of 13.11, 23.12 and 29.02 mph into a winged
rigid barrier [2]; see Figure 1. In addition to the normal
frontal crush, the crabbed orientation and barrier wing
induced significant tangential deformation and also
constrained the final tangential motion to be zero along
the main barrier face. Comparisons are made of the
ability of planar impact mechanics to model the barrier
impacts and of a combination of the CRASH3 crush
analysis and planar impact mechanics to properly

partition the collision energy loss. A particular
comparison is made of the critical impulse ratio values
from planar impact mechanics with the test values.

PLANAR IMPACT MECHANICS

The use of impact mechanics, in one form or
another, to model the collision of two vehicles has been
studied and used for many years [3,4,5,6]. Only a
summary of some of the main points is included here.
For a detailed discussion, see [7]. The use of the work of
impulses associated with planar impact mechanics [1] is
a relatively more recent feature and allows a more
rigorous approach to partitioning the energy dissipated
in a collision and its association with the CRASH3 crush
energy algorithm. Additional treatment of this is
included here.

Figure 2 shows free body diagrams of two
colliding vehicles. The x-y axes are fixed to the ground.
The relative orientation of the n-t axes is through the
angle Γ. Following the usual assumptions [7] for the use
of impulse and momentum and from Newton’s laws, the
equations for the changes in the velocity components
can be written in closed form and are given in Appendix
A. Note that this problem is posed and solved as an
initial value problem, that is, the initial velocities are
known and the final velocities are calculated. Two of the
important results of the solution of the planar impact
equations are the expressions for the collision energy
loss and for the ΔV of each vehicle. If kinetic energy is
given the symbol T, the energy loss is TL and the
velocity changes of vehicles 1 and 2 are given in Eq 1
and Eq 2. All of the variables that appear in these
equations are known and are defined in Appendix A.
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Figure 1. Test configuration.
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Figure 2. Free body diagrams and coordinates of
impacting vehicles.



Note that two impact coefficients, the coefficient of
restitution, e, and the impulse ratio, μ, are part of the
planar impact mechanics model [7]. The definitions of
both e and μ are given in Appendix A. The coefficient
of restitution, e, is associated with the normal
(perpendicular) contact process over the intervehicular
surface and μ is associated with the tangential contact

process over the intervehicular surface. They are defined
in the equation in Appendix A. The main topic of this
paper is the establishment of the proper relationship of
the crush energy, EC, to the collision energy loss, TL. To
do this, it is necessary to examine the crush energy in
more detail. According to Prasad [8], in its simplest
form, crush energy, E~, is related to residual crush by Eq
3.
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where d0 and d1 are experimentally determined crush
stiffness coefficients, w is the width (extent) of the crush
on the vehicle and C is the (average) depth of the
residual crush. In practice, crush is measured according
to a protocol [9] at n locations, typically n = 6, and is
calculated using:

  (4)2 2
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where each Ki is a function of the n residual crush
measurements, Ci [8]. According to the original
development [10,11] and measurement protocol [9] each
measurement of Ci is taken normal to the heading or
transverse axes of the vehicle. This implies that the
crush energy, EC, is the energy expended by the
deformation process normal (perpendicular) to the
vehicle’s undeformed, as manufactured, surface. In
oblique collisions, energy also is expended during the
tangential contact process. The work of any tangential
effects (sliding, entanglement, deformation, etc.) must
therefore be accounted for separately. Analytically,
crush and crush energy is controlled by the normal
impact coefficient, e, and the tangential work is
controlled by the tangential impact parameter, μ.

The constants d0 and d1 depend on the specific
vehicle and the location on the vehicle (front, rear, side)
of the crush. Modifications [12,13] to the original crush
model of Campbell have been made that incorporate

restitution into the crush algorithm. However, the most
direct way is to use the barrier test coefficient of
restitution to determine the correct value of barrier crush
energy to calculate the appropriate values of d0 and d1
for each vehicle and then to use the appropriate value of
e corresponding to the collision restitution. In addition
to the collision value of e, the collision value of μ must
be known. For all collisions other than sideswipes, the
impulse ratio takes on its critical value [7], μ0,(see
Appendix A). Recall that the critical impulse ratio, μ =
μ0 corresponds to the condition that the final relative
tangential velocity at the impact center is zero, that is,
sliding at the intervehicular surface ends at or before
separation. Therefore, the simplest and most
straightforward way to properly incorporate restitution
into crush energy analysis is to use the proper individual
vehicle barrier test values of e and the proper value of e
for the vehicle-to-vehicle collision. Finally, it is
important to note that the critical value of μ is dependent
on the initial conditions (initial velocities) and the
collision configuration.

Work of Normal and Tangential Impulses:  The
appropriate manner to apportion TL once EC is known
and is now discussed. This section presents the
background of the reconstruction method of using EC
with planar impact mechanics to reconstruct vehicle
speeds. It also provides some insight into the sources
and magnitudes of the uncertainties and some guidelines
for the use of the method. Earlier work on the topic
addressed the application of partitioning the work done



by the normal and tangential impulses in relation to the
energy loss in a collision [1]. At the center of this
reconstruction method is the need for a relationship
between the work done by the normal and tangential
impulses and the energy loss in a collision. Energy is not
a vector whereas the intervehicular impulse is a vector
quantity. However, for purposes of analyzing vehicular
accidents, the energy associated with the residual
deformation of a vehicle can be related to the work of
the normal and tangential impulses generated while the
vehicles are in contact and energy is lost due to the
deformation of the vehicle components. 

Consider, for example, the normal impulse, Pn.
It is an internal action of the collision acting on the
contact surface but is an external action to each vehicle.
The work of Pn on each vehicle can be viewed as the
energy loss associated with the residual normal crush
deformation of that vehicle. The work of the tangential
impulse, due to the forces developed from sliding,
shearing plastic deformation and entanglement of
vehicle components, can be viewed as the energy loss
associated with the tangential contact effects. 

In order for this work-energy relationship to be
useful in the reconstruction of collisions involving
automobiles, an expression that relates the work done by
an impulse to the variables that are part of the planar
impact mechanics model is needed. A relationship for
computing the work of an impulse is given by a theorem
[15] that states that the work done by any impulse, P, is
given by the product of the magnitude of the impulse
and the average velocity of the point of application of
the impulse in the direction of the impulse. This
relationship is expressed mathematically by:

  (5)
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where v is the initial velocity and V is the final velocity
of the point of application of the impulse P in the
direction of the impulse. It is intuitive that the
intervehicular contact forces do not act at a singular
point during the time that the vehicles are in contact.
However, the development of current planar impact
mechanics models require that the impulse of the forces
act at a point on the contact surface. This point, referred
to as the center of impact, represents the spatial and
temporal average (over the contact duration) for the
location of the application of the impulses Pn and Pt
during contact between the two bodies. Determination
of the location of the impulse center in the application of
this model requires judgement by the reconstructionist.
The center of impact is labeled C in Figure 2.

Application of the relationship given by Eq 5 to
the normal and tangential impulses generated during the
impact between two rigid bodies requires that
expressions for the initial and final velocities in the
normal and tangential directions at the point of
application of the impulses be written. For two rigid
bodies the expressions for the initial and final relative
velocities at the impact center in the normal direction are
(v2Cn - v1Cn) and (V2Cn - V1Cn), respectively. Similar
expressions for the tangential direction can be written by
changing the n-subscript to a t-subscript. Introducing
these expressions into Eq 5, writing the impulse using its
normal and tangential components and grouping the
terms into the normal and tangential components gives
Eq 6. Since the impulse component, Pn, is normal to the
intervehicular crush and residual crush is measured
normal to the as-manufactured vehicle surface [9], the
first work-energy term in Eq 6 has been associated with
the residual crush and crush energy, EC [1, 14].
Similarly, the second term has been associated with the
tangential energy loss, ET. In effect, this partitions the
collision energy loss into two parts since from
conservation of energy, WP = -TL. Consequently, EC and
ET are given by Eq 7 and Eq 8, respectively.
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The energy partitioning process leading to Eqs.
7 and 8, is intuitive, and does not follow directly from
any principle of mechanics. If the partitioning were
exact, the right hand side of Eq 7 would depend only on
e thereby excluding any tangential effects and the right
hand side of Eq 8 would depend only on μ thereby
excluding any normal effects. However most collision
reconstructions use the critical value of μ, μ = μ0, which
itself depends on the restitution e [1,7] so such an
idealistic condition is not practical. To investigate these
dependencies, the sensitivities of the equations to
changes in the parameters is assessed with a numerical
example.

Since there are two initially undeformed vehicle
surfaces (one for each vehicle) and a single
intervehicular crush surface, which depends on the
collision geometry, the choice of the angle Γ can lead to
some uncertainty in applications. The sensitivity of the
partitioning to the choice of the value of Γ and to the
amount of normal restitution (magnitude of e) are
illustrated through the use of an example in which these
factors are varied systematically. Another source of
uncertainty that exists is the location of the impact
center. This is not investigated here.

Prior to investigating the sensitivity of the
energy partitioning, the influence of two parameters of
the planar impact model on the apportionment of the
energy is assessed. The particular parameters are the
angle Γ and coefficient of restitution, e. The angle Γ
defines the angular orientation of the n-t coordinate
system relative to the x-y coordinate system as shown in
Fig 2. Thus, the selection of Γ defines the direction
along which the normal and tangential impulses act.
Note that in the original CRASH3 method, visual
estimation of the Principal Direction of Force (PDOF)
was necessary. In the approach presented here, planar
impact mechanics provides the PDOF as an output but
the orientation of a single intervehicular crush surface
must be estimated (through the choice of Γ).

This reconstruction approach starts with the
measurement of the residual crush of the two vehicles
involved in the collision. In general, the normal
directions selected in the measurement process [9] for
each of the vehicles are defined along the longitudinal
and transverse coordinate axes of each individual
vehicle. These normal directions are independent of the
vehicle-to-vehicle collision geometry and are collinear
only under certain circumstances such as head-on
collisions. However, in the planar impact analysis, the
relative angular orientation of the vehicles is established

based on the combined damage profiles of the vehicles.
The orientation of the vehicles first is  established in an
x-y scene coordinate system. An n-t coordinate system
then establishes the angle Γ and a single intervehicular
crush surface. Therefore, the angle Γ must in some way
account for the two independent, vehicle-based normal
directions from which the crush energies have been
determined. The sensitivity of the energy apportionment
of the planar impact mechanics model to changes in Γ is
investigated using an example. 

The other parameter of particular interest in the
energy apportionment process is the coefficient of
restitution, e. To a certain extent, the influence of e on
the apportionment process depends on the selection of
Γ, as the coefficient of restitution is defined using the
preimpact and postimpact normal velocities at the
impact center which in turn depend on Γ. Therefore it is
expected that, although e varies typically between 0 and
0.3 for vehicular collisions [7], it will, in combination
with Γ, influence the apportionment of the energy loss
computed by planar impact mechanics along the normal
and tangential directions. Note that under the
assumption of the common velocity conditions [7], e =
0 and μ = μ0, the energy loss is a maximum [16] and the
velocities and energy loss determined by planar impact
mechanics are independent of the selection of Γ.
However, in applications where the energy determined
from residual crush is used as part of a reconstruction,
the selection of Γ plays a significant role in the
apportionment of the work done by the normal and
tangential impulses. It will be shown in a numerical
example that the uncertainty is manageable.

The following example provides insight into the
uncertainties and sensitivities of the reconstruction
method and provides information useful to a
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Figure 3. Positions and orientations of the vehicles used in
the example.



reconstructionist as a template for further, project
specific analysis that considers additional collision
geometries and combinations of parameters.

Example  Consider the three different perpendicular
collision geometries shown in Fig 3. The three relative
positions of Vehicle 1 (Veh 1) to Vehicle 2 (Veh 2) are
designated Position A, Position B, and Position C. The
two vehicles shown are similar in geometry and inertial
characteristics to a four door sedan (Veh 1) and pickup
truck (Veh 2). Vehicle 1 has a curb weight of 2564 lb, a
yaw moment of inertia of 1434.9 lbf-s2-ft and an overall
length of 14.6 feet. Vehicle 2 has a curb weight of 6345
lb, a yaw moment of inertia of 5192.4 lbf-s2-ft and an
overall length of about 21.8 feet. The center of mass of
the pickup truck was moved rearward by about 2 feet to

create symmetry for Positions A and C which simplifies
the comparison of the results. These inertial parameters
remain fixed throughout the example. The vehicles are
given different initial velocities in the directions of their
headings at the beginning of impact. The initial speeds
of the vehicles are listed in Table 1. The coefficient of
restitution, e, was varied in the analysis between 0 and
0.3 for each of the positions and all combinations of
initial speeds of the vehicles. The angle Γ is zero for all
cases listed in Table 1. (Variations in Γ are explored
later.) Table 1 lists the apportionment of the work done
by the normal and tangential impulses, Wn and Wt, given
by Eqs. 7 and 8, respectively.

Examination of the results presented in Table 1
lead to the following observations about the nature of
the impact between these two vehicles and the

Table 1. Results from planar impact mechanics for
changes in the initial speeds of the vehicles, the relative

geometry at impact and e for all cases

v1x v2y e μ0 Wn Wt Position
mph mph ft-lb ft-lb
-40 40 0.00 0.661 -30,097.2 -19,883.6 A
-40 40 0.15 0.594 -29,058.6 -20,308.8 A
-40 40 0.30 0.542 -26,793.1 -20,734.0 A
-40 40 0.00 0.369 -45,369.6 -16,747.6 B
-40 40 0.15 0.321 -44,348.8 -16,747.6 B
-40 40 0.30 0.284 -41,286.4 -16,747.6 B
-40 40 0.00 0.582 -24,427.5 -14,213.9 C
-40 40 0.15 0.484 -24,239.3 -13,788.6 C
-40 40 0.30 0.410 -22,824.4 -13,363.4 C
-20 40 0.00 1.121   -8,233.0 -18,466.1 A
-20 40 0.15 1.009   -7,867.0 -18,678.7 A
-20 40 0.30 0.919   -7,194.4 -18,891.4 A
-20 40 0.00 0.738 -11,342.4 -16,747.6 B
-20 40 0.15 0.642 -11,087.2 -16,747.6 B
-20 40 0.30 0.568 -10,321.6 -16,747.6 B
-20 40 0.00 1.448   -5,398.2 -15,631.3 C
-20 40 0.15 1.201   -5,457.4 -15,418.7 C
-20 40 0.30 1.022   -5,210.0 -15,206.1 C
-40 20 0.00 0.396 -28,679.8   -5,679.6 A
-40 20 0.15 0.360 -27,853.8   -5,892.2 A
-40 20 0.30 0.331 -25,800.9   -6,104.8 A
-40 20 0.00 0.185 -45,369.6   -4,186.9 B
-40 20 0.15 0.160 -44,348.8   -4,186.9 B
-40 20 0.30 0.142 -41,286.4   -4,186.9 B
-40 20 0.00 0.220 -25,844.9   -2,844.8 C
-40 20 0.15 0.176 -25,444.1   -2,632.1 C
-40 20 0.30 0.142 -23,816.5   -2,419.5 C



apportionment of Wn and Wt for the corresponding range
of parameters (for a constant Γ, collision geometry and
critical impulse ratio). 
  # For all the geometries, combinations of parameters
and vehicle speeds, changes in the coefficient of
restitution, e, leads to changes in both Wn and Wt. 
  # With one exception, as e increases from 0 to 0.3, the
amount of work done by the normal impulse decreases.
The exception to this trend occurs for Veh 1 in Position
C with the speed of Veh 1 at its slowest, v1 = -20 mph,
and the speed of Veh 2 at its fastest, v2 = 40 mph. The
largest percent change of Wn for a change in e is 12.6%
for Position A. 
  # The trend in the work done by the tangential impulse
for constant Γ depends on the geometry of the vehicles
at impact. For Veh 1 in Position A, the amount of work
done by the tangential impulse increases as e increases.
For Veh 1 in Position C, the amount of work done by
the tangential impulse decreases as e increases. For Veh
1 in Position B, where the velocity of the mass center of
Veh 1 passes through the center of mass of Veh 2, the
amount of work done by the tangential impulse is
independent of e. In general, the percent change of Wt is
less than corresponding percent change in Wn for
changes in e over the typical range for vehicular
collisions. The largest percent change of Wt for a change
in e is 15.0% for Position C with the speed of Veh 1 at
its fastest, v1 = -40 mph, and the speed of Veh 2 at it
slowest, v2 = 20 mph. This is the only case that was
evaluated where the percent change of Wt is greater than
the percent change of Wn. 
  # The changes in initial speed of the vehicles for a
given position of Veh 1 relative to Veh 2 lead to
predictable trends in the apportionment of the normal
and tangential work. For all three positions of Veh 1, an
increase in the speed of Veh 1 for a fixed speed of Veh
2 leads to a increases in Wn with little or no change in
Wt. Correspondingly, for all three positions of Veh 1, an
increase in the speed of Veh 2 for a fixed speed of Veh
1 leads to increases in Wt with little or no change in Wn.
  # For the geometries and parameters investigated,
large changes in e do not lead to large changes in μ0.
(Recall that a change in the coefficient of restitution
changes the numerical value of the critical impulse ratio,
μ0.) For example, as e is changed from 0.15 to 0.3, a
change of 100%, μ0 changed from 0.594 to 0.542, a
change of only about 9%. This satisfies intuition in that
e is a parameter that is related to the normal direction
and changes in its magnitude should ideally have little
or no effect in the tangential direction.

  # Additional analysis for stationary Veh 2, v2 = 0 mph,
Γ = 0 and v1 = -40 mph shows that the tangential
impulse does no work for all three positions of Veh 1
shown in Fig 2. This trend is independent of e.

Having investigated some of the trends in the
apportionment of Wn and Wt as the coefficient of
restitution changes, the influence of Γ on these
quantities is now analyzed. Using Veh 1 in Position A,
the apportionment of Wn and Wt is evaluated for changes
of Γ while the balance of the parameters remain fixed.
The data shown in Table 2 lists the apportionment of Wn
and Wt for the conditions listed. 

Examination of the results presented in Table 2
lead to the following observations about the
apportionment of Wn and Wt. 
  # The data in Table 2 show the changes in Wn and Wt
for one degree changes in Γ for -5E# Γ # 5E. Data at
±10E are also included. These data are shown
graphically in Figure 4 and the trends are essentially
linear for this relatively narrow range of Γ. Small
changes in Γ lead to small percentage changes in Wn and
Wt for this example. Changes in Γ of 5E or more give
rise to changes in Wn and Wt on the order of 10% to 20%
from their nominal values for Γ = 0. This may seem
large when considering the reconstruction of a collision.
However, the uncertainty associated with the work and
energy of the collision is tempered by the fact that the
velocities (and the ΔVs) of the vehicles, typically the

Table 2  Results from planar impact
mechanics solution for changes in Γ, V1
= -40 mph, V2 = 40 mph, e = 0, Veh 1 in
Position A
Γ μ0 Wn Wt
deg ft-lb ft-lb
-10 0.947 -21242.0 -28738.7
  -5 0.794 -25,680.1 -24300.7
  -4 0.766 -26569.5 -23411.1
  -3 0.739 -27457.0 -22523.7
  -2 0.712 -28341.5 -21631.2
  -1 0.686 -29221.9 -20758.8
   0 0.661 -30097.2 -19883.6
   1 0.636 -30966.2 -19014.5
   2 0.612 -31828.0 -18152.8
   3 0.588 -32681.4 -17299.3
   4 0.565 -33525.5 -16455.3
   5 0.542 -34359.1 -15621.6
 10 0.434 -38336.4 -11644.3



desired output, are proportional to the square root of the
energy loss (see Eq 2). This relationship reduces the
uncertainty of the velocities of the vehicles as a function
of changes in Γ.

  # As Γ changes from 0E to 180E the apportionment of
the work done by the normal and tangential impulses
changes in a cyclical fashion due to the trigonometric
relationship between the quantities. The individual
amounts of work done by the two impulses changes
periodically but the total amount of energy lost in the
collision (and hence the combined work done by the
impulses) remains constant and is independent of Γ.

The range of parameters that were part of this
example that investigated the sensitivity of the method
is clearly not exhaustive. For instance, results for similar
vehicle impact geometry but with Veh 1 as the heavier
vehicle might show some different (and likely
interesting) trends. Analysts using the method for the
reconstruction of collisions that differ significantly from
the example above may want to explore the range of
uncertainty with parameters that more closely represent
the collision of interest.

Guidelines for Use of the Method:  The examples
above provide insight into the apportionment of Wn and
Wt for changes in several of the parameters. Several
guidelines for the use of the reconstruction method can
be assembled. These guidelines are directed primarily at
the selection of the parameters and the manner in which
to address uncertainty.

 The choice of Γ affects the apportionment of Wn
and Wt. Therefore, the user should examine uncertainty
due to Γ. One way to select an initial value for Γ is to
use the average angle of the two undeformed surfaces of

the vehicles and their relative angular orientation at
impact. Figure 5 shows two vehicles in their positions
immediately after initial contact. The heading of Veh 1
relative to the x axis is 0E while the heading of Veh 2 is
-135E (or +225E). This creates what is essentially a 45E
angle between the undeformed front surfaces of the
vehicles. Under these conditions the initial value for Γ
should be half of that 45E, or 22.5E as indicated by the
heavy line in Fig 5. The uncertainty for changes in Γ can
be bracketed above and below using the angles
associated with the two (undeformed) crush surfaces of
the two vehicles involved. For the vehicles depicted in
Fig 5, these angles would be Γ = 45E (Γ aligned with the
front of Veh 2) and Γ = 0E (Γ aligned with the front of
Veh 1). Note that the angles associated with this
example are the extremes that the range of Γ can attain.
If the vehicles in Fig 5 were closer to either a head-on or
front-to-side collision, Γ would be bracketed to a
narrower range. The two extremes, the head-on and the
front-to-side collisions, the value of Γ becomes zero and
the normal direction matches the normal directions
selected during the residual crush measurement
processes. The example above for a perpendicular
collision geometry used Γ = 0 as the nominal value.

The selection of the coefficient of restitution
differs little from the selection process for the
application of the planar impact mechanics model
without the consideration of the residual crush energy.
Data exist [1, 6, 7, 17, 18] that present values of the
coefficient of restitution determined from experimental
collisions. The data suggest that the coefficient of
restitution for most collisions involving light vehicles
ranges between e = 0 and e = 0.3 with the majority of
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the values likely at the lower end of that range.
In a reconstruction using an optimization

algorithm to match the energy lost in the normal crush,
the coefficient of restitution can be constrained during
the optimization to vary between the bounds such as
listed above. In this way, an additional degree of
freedom is used in matching the energy loss objective.
Inclusion of the (constrained) coefficient of restitution
in the optimization scheme may provide additional
insight into the solution reached. If, for example, the
optimization algorithm consistently produces a value of
e that is at the upper extreme of the constrained range,
say e = 0.3 (or higher if the constraint is broadened) and
there is little justification for e to take on these values
(such as an impact at an axle) then a re-evaluation of
other parameters, such as the geometry, may be in order.

In a similar manner the critical impulse ratio, μ0,
can be used to assess the nature of the collision. Values
of the impulse ratio from experimental collisions [1, 6,
7] indicate that for the majority of collisions involving
light vehicles, μ = μ0; this indicates that relative
tangential motion at the center of impact stops prior to
separation. Unless the physical evidence strongly
indicates otherwise, it is recommended that analyses of
collisions using planar impact mechanics use μ = μ0
(sideswipe collisions, where μ < μ0 are the exceptions).
The magnitude of the critical impulse ratio is dependent
on initial conditions. The larger the initial relative
tangential velocity at the impact center, the larger value
of μ0.

COMPARISON OF PLANAR IMPACT
MECHANICS WITH BARRIER TEST DATA

Impulse from Load Cell Barrier Force v Time:  In
order to compare the impulse ratio computed from
planar impact mechanics with its values measured from
the crabbed vehicle tests conducted by Struble-Welsh
Engineering, it was necessary to estimate values of the
normal impulse and tangential impulses from the
crabbed tests. As described earlier, the barrier used in

the tests consisted of a main barrier face parallel to the
crabbed vehicle’s front bumper at initial contact, and a
24 inch “wing” barrier rigidly mounted perpendicular to
the main barrier on the main barrier’s down-field end.

The barrier wing was intended to load the
vehicle front structure laterally while it was
simultaneously undergoing frontal crush. This lateral
loading also constrained the vehicle along the main
barrier face, thereby forcing the barrier impulse ratio to
equal the critical impulse ratio, μ0, of planar impact
mechanics. The critical impulse ratio can be calculated
from impact velocity and restitution. It can therefore be
calculated from impact conditions using planar impact
mechanics and this value is compared to the impulse
ratio estimated from test data, should the appropriate test
data exist. In the crabbed test series, such data did
indeed exist in the form of Force versus Time plots from
the barrier load cells.

The barrier was divided into six banks of load
cells: two on the left side of the main barrier, two on the
right side of the main barrier, and two on the wing
barrier. The two banks on the left side of the main
barrier, top and bottom, were combined by the test
facility into the plot SUM LEFT. The plots SUM
RIGHT and SUM WING, for each test were similarly
constrained. The plots are included in Appendix C.

The force versus time curves were digitized and
numerically integrated for each test. In Table 3, the
impulse values from each integration are reported in
units of N-s. The Normal (total) is a sum of the left and
right halves of the main barrier face. The Impulse Ratio
is the Wing Impulse divided by the Normal Impulse.

The Impulse Ratio values calculated from test
data and those from planar impact mechanics (see
Appendix B, Table B1) from tests 1 and 2 show good
agreement. The third test shows a dramatically higher
value than from planar impact mechanics. Examination
of the force versus time plots suggest a couple of
reasons for this difference. 

The first observation is that the main barrier
pulse shape had a higher peak for each subsequent test,

Table 3. Impulse values, N-s, and impulse ratio values
calculated from load-cell barrier data.

        Main Barrier                 Wing Barrier             Impulse Ratio
Test Left Right Normal
  1 2596 4612   7208 1720 0.239
  2 3301 6788 10089 2857 0.283
  3 3999 7715 11714 6262 0.535



particularly Test 3, while the wing barrier maintained
more of a broad shape at max force. This may be due in
part to the fact that the vehicle engaged the wing directly
in the third test; the vehicle seemed to wrap itself around
the wing. The very stiff right front suspension structure
engaged the wing directly in this test, which it did not,
or to a lesser extent, in the previous two tests.  The very
hard suspension engaging the relatively stiff wing may
have created a fulcrum about which the vehicle rotated.
This rotation about the wing end may have provided
some relief at the left side of the front bumper, as this is
the area that would initially rotate away from the barrier
in this counter-clockwise rotation about the wing end.
The rotation about the wing end would have the effect
of extending the time duration of the vehicle interaction
with the wing barrier (as compared to the main barrier
interaction with the front bumper), extending the time
duration of maximum force on the wing load cells.

Note the force value in the left side of the main
barrier in Test 3 in Appendix C. While the right side and
wing load cells again doubled their max force values
from the previous test, the left side of the main barrier
only increased by about 50%. This difference in the
increase in force levels seen in the right side and wing
load cells may also be related to the interaction
described above.

It is also the case that while the wing barrier
became more fully engaged in each subsequent test,
such was not the case for the main barrier. As the
vehicle sustained lateral crush in each test, the vehicle
was foreshortened laterally, resulting in less overlap of
the front of the vehicle onto the left side of the main
barrier. This would also serve to decrease the amount of
force, and impulse, recorded in the left side of the main
barrier.

The crush energy analysis conducted on the data
from these tests in [2] indicated that the vehicle frontal
structure behaved in a constant force manner in this
third test. This would suggest that the forces recorded in
the main load cell barrier were less than they would
have been had the vehicle front structure maintained a
constant stiffness behavior. This mitigation of peak
force in the frontal structure, as compared to the
increasing lateral stiffness (and force) due to interaction
with the very stiff right front suspension structure,
would tend to affect the frontal (normal) impulse as
compared to the lateral (tangential) impulse.

Finally, the right front structure had wrapped
around the end of the wing barrier in the third test,

engaging the end part of the wing parallel to the main
barrier face. This surface of the barrier was not
instrumented, and therefore any contribution of these
forces to the total normal impulse was not included in
the load cell data. This would serve to under-state the
normal impulse and thereby contribute to an artificially
high estimate of impulse ratio. 

All of the above suggests that the characteristics
of the pre-deformed vehicle in test 3, coupled with the
dynamics of this third test (also influenced by the pre-
deformed nature of the test vehicle), conspire to
generate a somewhat high lateral impulse (as measured
from load-cell data), along with a somewhat low normal
impulse, resulting in the calculation of an artificially
high impulse ratio as compared to what one would
expect in a non-pre-crashed vehicle.

Restitution from Rigid Body Kinematics: It was of
significant interest in this project to find a realistic
estimate of the restitution values from the three tests. In
this scenario the coefficient of restitution, which is
defined as e = -VCrn/vCrn, pertains to the components of
separation and impact velocity perpendicular to the main
barrier face at a point on the contact surface at the front
of the vehicle. The value of vCrn is defined by the impact
parameters and initial conditions, while the value of VCrn
must be measured from test data. Because any method
chosen for finding VCrn has some error associated with it,
it was decided to use two different methods so that the
results could be compared, and possibly averaged, to
provide a reality check. The two methods used were
rigid body kinematics and film analysis.

Rigid body kinematics provides the vector
equation VP = Vcg + ω x rP. With this equation, the
velocity, VP, of any point, P, on a rigid body may be
found from the velocity at the center of mass, Vcg, the
body’s rotational velocity, ω, and the position vector, rP,
from the CG to the point P. Previous analysis [2]
resulted in velocity at the center of mass (CG, in inertial
coordinates) and angular velocity of the vehicle at
separation. Separation was defined as the time at which
rebound velocity reached its minimum. The only
parameter here that still needed to be defined was r, the
position vector of the point of interest (in inertial
coordinates). To determine r, it is necessary to know
where the point resided on the deformed vehicle, and
how much the vehicle had rotated during the crush
phase.

A full-scale deformation map was made of the
vehicle after each test. On the full scale map, the



components of the vector r from the CG to the point at
the center of the front edge of the bumper on the bent
(post-test) vehicle were measured relative to the long
axis of the undamaged vehicle.

To determine how much the vehicle had rotated
from initial contact to separation, the average angular
velocity during this phase was estimated to be half of the
angular velocity at separation, and this average was
applied over the contact duration to calculate an angular
displacement at separation.  Folding this angular
displacement value into the components of r measured
on the deformed vehicle resulted in the components of
r in inertial coordinates. Then all the components
necessary to perform the cross product and find the
separation velocity at the point of interest were then
available.

After performing the cross product and adding
this velocity to Vcg, the resulting separation velocity at
the front of the vehicle was resolved into components
perpendicular and parallel to the face of the main
barrier. The component perpendicular to the main
barrier prior to impact was then divided by the
component of the impact velocity perpendicular to the
main barrier and this was the restitution value reported
in Table 4.

Restitution from Film Analysis of Experimental
Barrier Collisions: Two overhead high-speed video
cameras (1,000 fps) were included for each test, one
wide angle and one narrow. The narrow angle camera
showed approximately the front half the vehicle, and
this was the view used for film analysis.

The point of interest near the front of the
crushed vehicle was located for each test on the video
and the perpendicular distance from that point to the
barrier face was recorded at 10 ms intervals. This
perpendicular position was plotted versus time. Rather
than take the derivative of the line created by these
points to find the velocity, the line was first smoothed
with the Lowess and WLS smoothing routines of Axum
software. Both smoothing routines were tried and the
derivatives of the smoothed lines gave velocity values
within 0.020 ft/s. The value of the velocity at the
separation time value used in the rigid body kinematics
analysis was then extracted from the data and divided by
the component of impact velocity perpendicular to the
barrier. These are the values of restitution shown in
Table 4.

Because of the disparate methods used to
determine e, the values for each test are quite different.
Consequently, an average for each test is used in all
following comparisons of the test data with results from
planar impact mechanics.

Results from Planar Impact Mechanics:    The crash
tests consisted of three sequential crabbed rigid barrier
tests (see Figure 1) of the same vehicle at successively
higher speeds. An assumption is made that the
relationship between the crush energy and the residual
crush remains linear according to the CRASH3 model.
This is illustrated in Fig 6 which shows that the crush
energy for each test is an accumulation of the kinetic
energy from test to test. This implies that an Energy
Equivalent Speed, EES, [7, 19] exists for each test
where, for n barrier tests,

  (9)2

1

n

in
i

EES v
=

= ∑
and vin is the initial normal velocity into the barrier.
Regardless of any preexisting crush, each barrier test has
a given initial speed, initial kinetic energy,  coefficient
of restitution, tangential coefficient, kinetic energy loss,
ΔV, etc. Figure 7 is a plot of E* (see Eq 3) as a function
of residual crush, C, from the three successive barrier
tests. It illustrates how the average measured crush using
the NHTSA based crush stiffness coefficients [2]
matches the linear CRASH3 model.

Two comparisons can be made for the test
results for each barrier collision. One is a direct
comparison of the experimental data of each crash with
planar impact mechanics. Another is a comparison of the
ΔV values calculated directly from CRASH3 with those
of planar impact mechanics combined with CRASH3
crush energy that was described earlier. Appendix B
contains two tables that summarize such comparisons.

Table 4. Restitution values
calculated from tests data using

two different methods.

 Rigid Body Film
Test Kinematics Analysis Avg
1    0.111 0.256 0.18
2    0.100 0.153 0.13
3    0.137 0.098 0.12



Comparison of Barrier Test Results with Planar
Impact Mechanics:  Table B1 gives direct comparison
of calculated and measured barrier impact results. The
ΔV values from the 3 collisions all are within 3%. The
critical impulse ratios are of particular interest to the
work in this paper. Table 3 lists the values determined
from the experimental data. For the first collision (with
an undamaged vehicle), the test value is μ0 = 0.239 and
the computed value is μ0 = 0.232. For the second
collision, the test value is μ0 = 0.283 and the computed
value is μ0 = 0.243. The comparison is not as good for
the third barrier collision; the test value is μ0 = 0.535
and the computed value is μ0 = 0.245. As already
discussed above, the difference likely is due to existing
vehicle damage making contact with the barrier wing in
the third collision.

The comparison of the final angular velocities,
Ω1 and Ω2, between test and computed values is
illustrated. All of the values predicted by planar impact
mechanics are higher than the test values, some by as
much as a factor of 2. This is likely due to the winged
geometry of the structure that may permit the
development of a moment impulse [20] at the front of
the vehicle which is ignored by this version of planar
impact mechanics. This was not pursued in the study.

Comparison of CRASH3 Barrier Crush Energy with
Planar Impact Mechanics Analysis:  The crush energy
and ΔV value based on the measured residual crush after
each barrier test were computed using the CRASH3

damage algorithm using the crush stiffness coefficients
from NHTSA tests [2]. These are corrected for
tangential effects (using the PDOF from planar impact
mechanics) and presented in Table B2, Appendix B. The
crush energy loss for each test was equated to the work
of the normal impulse as discussed above and also are
presented in Table B2 (Appendix B). The main
comparison is between the collision energy loss TL
predicted by CRASH3 and as predicted by planar impact
mechanics and the corresponding values of ΔV. For Test
1, TL = 11550 ft-lb (15.7 kJ) and ΔV = 9.9 mph (15.9
kph) from CRASH3. From planar impact mechanics, for
Test 1, TL = 12504 ft-lb (17.0 kJ) and ΔV = 12.2 mph
(19.6 kph). The barrier test ΔV = 13.7 mph (22.0 kph).
These comparisons and data from all three tests is
presented in Table 5 using US units.

Tables 5 (US units) and 6 (Metric units) provide
comparisons of crush energy and planar impact
mechanics and crush energy with CRASH3 impact
mechanics. (Note that in all applications of CRASH3
impact mechanics, the PDOF from planar impact
mechanics was used, not a visually estimated value.)

 P For Tests 1 and 2, both the crush energy and ΔV
values calculated using planar impact mechanics agree
better with the measured values.
 P For Test 3 (which had an adverse impact with the
barrier wing), CRASH3 mechanics gives crush energy
and ΔV values closer to the measured values.

DISCUSSION AND CONCLUSIONS:

Planar impact mechanics is a rigorous solution
of the problem of the impact of two rigid bodies in a
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plane. It should provide more accurate results than the
point impact solution used by CRASH3 to calculate ΔV.
In addition, the use of the work of the normal impulse to
represent crush energy and the work of the tangential
impulse to represent energy loss from tangential effects
over the intervehicular contact surface eliminates the
need for visual estimation of the PDOF and the use of
the CRASH3 tangential correction factor.

In contrast to the common normal velocity
condition of CRASH3, e = 0, the use of planar impact
mechanics allows proper modeling of the effects of
restitution. With this approach, it is unnecessary to make
any corrections to the CRASH3 model to represent the
effects of restitution.  The use of planar impact
mechanics and its critical impulse ratio allows a
rigorous modeling of the tangential effects and
automatically includes tangential energy loss without
tangential correction. The use of the critical impulse
ratio and planar impact mechanics for the purposes of
reconstruction automatically takes into account the
dependence of the tangential impulse on the initial
conditions. 

The use of planar impact mechanics (and the
corresponding selection of a common crush surface)
precludes the need for visual estimation of a PDOF, as
required by CRASH3. With one exception (Test 3),
comparison of constrained barrier tests shows that the
critical impulse ratio computed by planar impact
mechanics agrees well with experiments. This was also
demonstrated by fitting of the RICSAC collision test
data [21].

The selection of a common crush surface from
observation and measurements of the actual damage
leads to an estimation of the angle Γ. This process,
which is based on physical measurements, should be
more accurate than the estimation of the PDOF as
required for application of CRASH3.  A discussion of
the how to select Γ and how this selection process can
affect the uncertainty of a reconstruction was presented
in the paper. 

Table 5. Comparison of CRASH3, Planar Impact Mechanics and Test Values
            Test                           CRASH3        Planar Impact Mechanics
Crush Energy EES Crush Energy ΔV Crush Energy ΔV

Test     ft-lb mph     ft-lb mph     ft-lb mph
1   13674 11.2   11550 9.9   12504 12.2
2   56876 22.8   47524 20.1   61334 23.6
3 125102 33.8 134329 33.8 145048 39.2

Table 6. Comparison of CRASH3, Planar Impact Mechanics and Test Values
            Test                           CRASH3        Planar Impact Mechanics
Crush Energy EES Crush Energy ΔV Crush Energy ΔV

Test     kJ kph     kJ kph     kJ kph
1   18.6 18.0   15.6 15.9   17.0 19.6
2   77.2 36.7   64.5 32.4   83.3 37.9
3 170.0 54.3 182.4 54.3 197.0 63.1



APPENDIX A: Notation and Solution Equations of Planar Impact Mechanics

Notation, Subscripts:

cg center of gravity
n, t normal & tangential axes (Fig 2)
x, y ground based axes (Fig 2)
r relative
C impact center
1, 2 vehicle number
P point P

Notation, Variables:

C crush
d0, d1 crush stiffness coefficients
da, db distances, Appendix A
dc, dd distances, Appendix A
de, de distances, Appendix A
e coefficient of restitution
E energy

E~ defined in Eq 3
EC energy loss due to crush
I yaw moment of inertia
Ki constants in Eq 4
m mass
P impulse
r velocity ratio
T kinetic energy
v initial velocity
V final velocity
W work
ΔV velocity change
Γ crush surface angle
ω initial angular velocity
Ω final angular velocity
μ impulse ratio

Summary of assumptions for planar impact mechanics:

1. A single dynamic contact, taking place over a short duration.
2. Forces other than the contact force and impulses of forces other than the contact force are negligible.
3. Rotational motion of the masses can be significant.
4. Initial velocities are known and final velocities are unknown.
5. Deformation is localized and small compared to the size of the bodies.
6. During the contact duration, position and orientation changes are negligibly small, velocity changes are
instantaneous and accelerations are large.
7. The effects of the normal (crush) and tangential (sliding, shearing, entanglement, crush, etc.) contact processes
are known (through coefficients).
8. A point (impact center), C, common to both vehicles and on the line of action of the contact impulse is known
9. A common crush plane defined by the angle Γ, is known.

Solution Equations of planar impact mechanics:

(A1)1 1 1(1 ) /n n rnV v m e v q m− = +
(A2)1 1 1(1 ) /t t rnV v m e v q mμ− = +
(A3)2 2 2(1 ) /n n rnV v m e v q m− = − +
(A4)2 2 2(1 ) /t t rnV v m e v q mμ− = − +

(A5)2
1 1 1 1(1 ) ( ) /( )rn c dm e v d d q m kω μΩ − = + −

(A6)2
2 2 2 2(1 ) ( ) /( )rn a bm e v d d q m kω μΩ − = + −



(A7)/Crn Crne V v= −
(A8)/t nP Pμ =

(A9)2
1 1 1I m k=

(A10)2
2 2 2I m k=

(A11)2 2 1 1( ) ( )rn n a n cv v d v dω ω= − − −
(A12)1 1 2 2Crn n c n aV V d V d= + Ω − + Ω
(A13)1 1 2 2Crn n c n av v d v dω ω= + − +

(A14)
2 2

2 2 2 2
2 2 1 1 1 1 2 2

1 1 a c c d a bmd md md d md d
q m k m k m k m k

μ
⎛ ⎞

= + + − +⎜ ⎟
⎝ ⎠

(A15)2 2 2sin( )ad d θ ϕ= + − Γ
(A16)1 1 1sin( )bd d θ ϕ= + − Γ
(A17)1 1 1cos( )cd d θ ϕ= + − Γ
(A18)1 1 1cos( )dd d θ ϕ= + − Γ
(A19)e c dd d dμ= −
(A20)f a bd d dμ= −

(A21)2 2 1 1

2 2 1 1

( ) ( )
( ) ( )

t b t d

n a n c

v d v dr
v d v d

ω ω
ω ω

− − +
=

− − +
(A22)1 1 1( )x x xP m V v= −
(A23)1 1 1( )y y yP m V v= −

(A24)cos sinn x yP P P= Γ + Γ

(A25)sin cost x yP P P= − Γ + Γ

(A26)1 2 1 2/( )m m m m m= +

(A27)0
(1 )

(1 )(1 )
rA e B

e C rB
μ + +

=
+ + +

(A28)2 2
1 21 ( / / )c aA m d I d I= + +

(A29)1 2( / / )c d a bB m d d I d d I= +

(A30)2 2
1 2( / / )d bC m d I d I= +



APPENDIX B: Comparisons of Tests, CRASH3 and Planar Impact Mechanics

Table B1. Comparison of Barrier Tests With Planar Impact Mechanics
(comparisons are made both for e = 0 and for measured values of e)

   Struble Welsh Barrier Tests   planar impact mechanics analysis    
                  
         Kinetic Energy Loss      
    Initial Kinetic     normal tangent total      

 v, ft/s vn  ft/s vt  ft/s Energy, TI, ft-lb e |μ| Ω ΔV, mph TLn TLt TL |μ| Ω ΔV, ft/s ΔV, mph PDOF 
                  
TEST1 19.23 16.6537 9.6150 18842.80 0.0000  -   -   -  14130.70 2236.90 16367.60 0.274 64.3 17.3 11.8 15.3 
13.11 19.23 16.6537 9.6150 18842.80 0.1800 0.239 37.7 13.7 13672.80 2236.90 15909.70 0.232 64.3 20.2 13.8 13.1 
mph                  

                  
                  
TEST2 33.91 29.3669 16.9550 58592.55 0.0000  -   -   -  43939.90 6955.70 50895.60 0.274 113.4 30.4 20.7 15.3 
23.12 33.91 29.3669 16.9550 58592.55 0.1300 0.283 53.8 24.0 49197.30 6955.70 50153.00 0.243 113.4 34.1 23.3 13.6 
mph                  

                  
                  
TEST3 42.56 36.8580 21.2800 92297.52 0.0000  -   -   -  69216.10 10956.90 80173.00 0.274 142.3 38.2 26.0 15.3 
29.02 42.56 36.8580 21.2800 92297.52 0.1200 0.535 69.3 29.8 68219.40 10956.90 79176.30 0.245 142.3 42.5 29.0 13.8 
mph                  

 



Table B2: Comparison of Tests, CRASH3 Analysis and Planar Impact Mechanics
(comparisons are made both for e = 0 and for measured values of e)

   Struble Welsh Engineering Tests      
constant  
stiffness CRASH3 reconstruction planar impact mechanics 

             
C1,C2, 
..,C6     

C1,C2, 
..,C6  reconstruction 

    Initial   Crush              

    Kinetic   Energy      Kinetic Energy 
Loss, 
ft-lb Kinetic Energy 

Loss, 
ft-lb  

 initial speed ft/s Energy, ft-lb  Ec EES     normal tangent total normal tangent total  

 v vin vit TI e |μ| 
(1-

e2)mv1n
2/2 

VBEQ, 
ft/s e2Ec/w 

Cavg, 
ft d0 + d1*C TLn 

TLt = 
tan2α TL TLn TLt TL |μ| 

                     
TEST1 19.2 16.7 9.6 18843 0.00  14132 16.7 75.2 0.1062 65.56 10746 804 11550 10746 1701 12447 0.274 
 19.2 16.7 9.6 18843 0.18 0.239 13674 16.4 74.0       10746 1758 12504 0.232 

 
13.1 
mph                    

                     
                     
TEST2 33.9 29.4 17.0 58593 0.00  58077 33.8 152.4 0.5203 132.99 44215 3309 47524 44215 6999 51214 0.274 
 33.9 29.4 17.0 58593 0.13 0.283 56876 33.4 150.8       44215 7120 51334 0.243 

 
23.1 
mph                    

                     
                     
TEST3 42.6 36.9 21.3 92298 0.00  127300 50.0 225.7 1.0768 223.58 124976 9353 134329 124976 19784 144759 0.274 
 42.6 36.9 21.3 92298 0.12 0.535 125102 49.5 223.7       124976 20073 145048 0.245 

 
29.0 
mph                    

                  impact   

             e CRASH3 
C1,C2, 
..,C6 e mechanics 

C1,C2, 
..,C6  

              ΔV, ft/s 
ΔV, 
mph   ΔV, ft/s 

ΔV, 
mph  

            TEST 1 0.00 14.5 9.9 0.00 15.1 10.3  
                0.18 17.9 12.2  
                     
            TEST 2 0.00 29.5 20.1 0.00 30.5 20.8  
                0.13 34.5 23.6  
                     
            TEST 3 0.00 49.5 33.8 0.00 51.3 35.0  
                0.12 57.5 39.2  

 



APPENDIX C: Force v Time curves from load cell barrier data in SWE tests

Test1 Test 2

Test 3
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