ABSTRACT

Hydraulic engine mounts are used in the automotive industry
because they offer frequency and amplitude response character-
istics superior to the conventional elastomeric engine mount.
This response is well established but is not fully understood.
Numerous articles have attempted to explain the complex
behavior of these mounts using linear theory. This paper uses
the same linear models developed in previous papers, but
offers a more fundamental explanation of the system response
using these previously derived two degree of freedom models,
_-In addition, the source of engine vibrations and their corre-

onding frequency ranges are explained in detail. Techniques
borrowed from control systems are used to interpret system
response and terminology used in the automotive industry to
describe the behavior of hydraulic engine mounts is clarified.
Validation of the two degree of freedom model is made by
comparison with experimental data.

INTRODUCTION

The engine-chassis-body system of automobiles is subjected
to undesirable vibrational input from the engine and from the
road and wheels. The engine excitation is typically in the
range of 10 to 200 Hz. Wheel excitation is typically below 30
Hz. The design engineer has two means by which these
vibrations can be eliminated. The first approach is to choose
mount positions and characteristics such that a particular
design criteria is met [1,2,3,4,5,6,7]." Two examples of these
design criteria are: i) position the mounts such that the six
rigid body vibrational modes of the engine are uncoupled from
each other [1,4,5,6]; and ii) to select mount characteristics and
positions such that natural frequencies are removed from
frequencies of excitation [3,7]. The second approach to engine
vibration isolation is to carefully design the mount to achieve
the isolation characteristics appropriate for the frequencies and
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amplitudes of the vibration [8,9,11-21]. These isolation
characteristics typically require the mount to exhibit the
conflicting characteristics of large stiffness and large damping
for the frequency range 1-30 Hz and low stiffness and low
damping for frequencies of excitation above 30 Hz. These two
approaches to engine vibration isolation are not mutually exclu-
sive. Effective vibration isolation of an automobile engine
requires proper placement of the appropriately designed mount.

This report employs the second approach to engine vibration
isolation described above by focusing on the behavior of the
class of engine mounts known as hydraulic engine mounts.
The operation and response of these mounts is described in
detail in this report. In particular, the dependence of the
response of this type of mount on the frequency and amplitude
of excitation permit the conflicting damping and stiffness
characteristics mentioned above to be met.

The second section of this report is a comprehensive review
of literature pertaining to hydraulic engine mounts. A detailed
description of the source of engine vibration is described in the
third section. In the fourth section the design and operation of
an hydraulic engine mount are then discussed. In that section,
the terminology used to describe the operating characteristics
of hydraulic mounts is discussed and a linear two degree of
freedom model is introduced to model their behavior. Interpre-
tation of the dynamic stiffness of hydraulic engine mounts
consistent with linear vibration theory is then presented. The
report concludes with numerical verification of the two degree
of freedom model through comparison of analytical results
with experimental data.

“Numbers in brackets refer to references listed in the back of the paper.
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LITERATURE REVIEW

The earliest mention of hydraulic mounts is found in
Bernuchon’s paper [9]. His report addresses a mount which
uses a fixed-type decoupler.” He proposes a linear two degree
of freedom system to model the mount but does not perform
any analysis using this model. He establishes conventions used
today to analyze hydraulic mounts, which are a nominal
deformation amplitude of +0.1mm for the frequency range 30-
200 Hz and +1.0mm for the frequency range 5-30 Hz. He
defines complex dynamic stiffness in his report as the modulus
of the ratio of the load transmitted to the frame to the input
vibration amplitude. (More information will be presented later
on the topic of dynamic stiffness.) He also uses the loss angle
as the measure of the system damping. The loss angle is
defined as the phase difference between the load transmitted by
the mount and the input displacement. He presents experimen-
tal data which shows a 5dB reduction of noise levels inside the
car due to the use of hydraulic engine mounts. Corcoran and
Ticks [11] analyze several types of hydraulic mounts using a
single degree of freedom model. They compare various
configurations of mounts and show experimentally the range of
performance that can be achieved using hydraulic mounts.
They propose a decoupler to change the behavior of the mount.
They give experimental results which show a general decrease
in noise in the vehicle for hydraulic mounts versus elastomeric
mounts. They demonstrate the effectiveness of the mount
experimentally using a tuned mount to eliminate first order idle
shake at 11 Hz. They also propose a criteria for the optimum
placement of the hydraulic engine mount. In performing this
optimization, the authors assume the maximum damping is
achieved by stroking the mount through the vertical axis (see
Figure 6) such that the inertia track is engaged. The mount
provides little damping when stroked in shear since there is
little movement of fluid for this motion. Flower [12] uses
bond graphs to develop models of several different mount
geometries. These models are used to explain the operation of
the inertia track and the decoupler. He presents experimental
data which shows the increased effectiveness of the hydraulic
mount over the elastomeric mount. However, no direct
comparison of the analytical model and experimental data is
given. Clark [13] proposes a two degree of freedom mathe-
matical model for a mount which has an inertia track but no
decoupler. The parameters of the two degree of freedom
model are modified to obtain two linear models for the two
frequency ranges. He uses his models to perform tuning of
parameters to provide desired force transmissibility in the low
and high frequency ranges. He then incorporates this model
into a three degree of freedom model representing one quarter
of a car. Next, he proceeds to tune the mount for engine
induced and road induced vibration obtaining optimum model
parameters to minimize the displacement of one of the degrees
of freedom. Marjoram [14] considers the use of hydraulic
mounts for the isolation of tractor-trailer cabs. While this

paper presents an interesting application, it also proposes the
use of internal pressurization of the collector separator dia-
phragm (referred to as a bellow in Figure 6) for the accommo-
dation of static load variations. This has the effect of tuning
the hydraulic mount by changing its frequency response
characteristics. Le Salver [15] presents experimental data for
a mount with a free decoupler and also presents several
theoretical models. However, no direct comparison of the
analytical and experimental data is made. Sugino and Abe
[16] develop a model of an hydraulic mount which uses an
inertia track but no decoupler. They confirm the validity of
the model with experimental results. They then consider a
quarter car model incorporating their hydraulic mount model
and compare this to experimental results. Ushijima et al
{17,18] propose a two degree of freedom model and use it to
evaluate the performance of hydraulic mounts to the superposi-
tion of a high frequency-low amplitude and low frequency-high
amplitude input. They experimentally verify the ineffec-
tiveness of the hydraulic mount with a free decoupler in
isolating high frequency components. They attribute this to the
heavy nonlinearity of the decoupler and they propose and
alternative mount which uses a pliable fixed-type decoupler,
The authors state that this alternative mount can provide a low
dynamic stiffness for low forcing amplitude up to a frequency
of 800 Hz.

Seto et al [19] model the hydraulic mount as a vibration
absorber and uses optimization theory to minimize the ratio of
the engine displacement to the frame displacement. The
optimization method used is that presented by Hartog [20].
Experimentation is used to verify the models.

Nakajima, et al model the hydraulic engine mount using an
hydraulic chamber model [22]. An expression for the ratio of
the input force to the input displacement is derived using
lumped parameters. This model is used in the design of an
hydraulic strut mount [23]. In [23], correlation between
analytical and experimental data for the hydraulic strut mount
is presented.

The most recent and complete treatment of hydraulic mounts
is given by Singh et al [21]. In this work, a lincar time invari-
ant model of the mount with inertia track and decoupler is
developed using lumped mechanical and fluid elements. The
model is validated experimentally for the frequency range 1 -
50 Hz. In this paper, parameter studies are performed, force
transmissibility is investigated and comparisons to previous
models are included. Model limitations are also discussed.

ENGINE VIBRATIONS

SOURCES AND FREQUENCY RANGES OF ENGINE
VIBRATION - Vibrational excitation of the engine comes
from two sources. One source is engine out of balance forces.
For example, in a four cylinder in-line engine, out of balance

"A description of hydraulic mounts with free and fixed type decouplers is given later.
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forces occur in the direction of piston motion at predominantly
twice the crankshaft speed. These forces are called secondary
or second-order forces and act in the vertical, or bounce

_~direction. The lateral forces and primary forces in the vertical

irection are completely balanced. For a complete discussion

of the forces in multi-cylinder engines, see Hartog [20]. For
an engine with a rotational speed range of 750 - 6000 rpm, the
frequency of these out of balance forces is 25 - 200 Hz.
Diesel engines pose special problems. These engines have
unbalance forcing at half-order and first-order in addition to
second-order forcing. These forces, due to uneven firing, and
are mentioned in [§8], but their source is not discussed.

The second source of engine excitation, road/wheel input,
subject the vehicle chassis to inputs of both random and
periodic form. Random inputs depend on the road surface and
periodic inputs are due to wheel out of round or out of
balance. These inputs can be amplified by resonances in the
tire/suspension/chassis system. The predominant frequency
range of these inputs is below 30 Hz.

Due to the nature of the two frequency ranges of engine
vibration sources, the frequency range 1-200 Hz is typically
separated into two ranges for engine mount analysis: 1-30 Hz
and 30-200 Hz. It is important to note that the excitation
below 30 Hz is associated primarily with wheel inputs. This
excitation is transmitted from the wheel and suspension to the
chassis such that the engine is forced from the base. The
amplitudes of excitation in this frequency range are typically
greater than 0.3mm. In the frequency range 30-200 Hz, the
excitation is generated by the engine out of balance forces.

~~The vibration amplitudes in this frequency range are generally

288 than 0.3mm.

ISOLATION OF ENGINE VIBRATIONS - In view of the
amplitude and frequency ranges of the inputs to the engine, the
fundamental problem of isolation of engine vibration becomes
apparent. To isolate the engine out of balance forces, the
engine should have a rigid body natural frequency below 30
Hz and usually in the 6-12 Hz range. This places the forcing
frequency due to out of balance forces above these natural
frequencies. Since the engine has six degrees of freedom,
placing all the natural frequencies in this narrow range can be
difficult. However, since the exciting force due to out of
balance is primarily in the vertical direction, it is this natural
frequency which is most significant. Therefore this frequency
is kept in the 8-12 Hz range and the natural frequencies of the
other modes are usually kept between 12 and 20 Hz. Howev-
er, this means that the natural frequency of the vertical rigid
body mode is in the range of the wheel input. Excitation of
this mode from the frame input is known as engine shake.
Similarly, excitation of the vertical mode from incompletely
balanced first order engine forces can result and this is known
as idle shake. This is usually perceived in the passenger
compartment by vibration of the steering wheel and dashboard.

Single degree of freedom models can be used to understand
the requirements of an engine mount to eliminate unwanted
vibrations. The engine-mount system subjected to wheel inputs
can be modeled as a mass supported on a spring and a
dashpot. The mass represents the mass of the engine and the
stiffness and damping characteristics of the mount are modeled
as a spring and a dashpot respectively (see Figure 1). Second-
order forces developed by the engine supported on mounts can
be modeled as a mass supported by a spring and a dashpot
with eccentric mass forcing (see Figure 3). The nondimen-
sionalized displacement response, (X-Y)/Y, and the force
transmissibility, F/F,, for these two systems are given in
Figures 2 and 4, respectively. The importance of these specific
quantities will be given in the following discussion.

From previous considerations, a passive engine vibration
control strategy can be established. Large amplitude rigid
body vibrations resulting from wheel input in the 1-30 Hz
range can be controlled using a mount with large stiffness and
large damping. For this type of input, the base excitation
system is used for analysis (see Figure 1). The relative
displacement is examined since it is the motion of the engine
on the mounts relative to the chassis which needs to be
controlled. This control prevents the engine from encountering
motion limiting stops and developing large forces. For large
stiffness, the operating point on the response curve is to the
left of r = 1 where the relative displacement is minimum.
Increased damping increases the effectiveness regardless of the
frequency ratio.

Lower stiffness and lower damping are needed to isolate the
small amplitude vibrations resulting from unbalanced second-
ary forces. In this operating range, the system behaves as a
single degree of freedom system with eccentric forcing. This
system is shown in Figure 3 and response curves for the force
transmissibility, F/F, for various damping ratios are shown in
Figure 4. The force transmitted to the chassis is examined
since these forces result in transmission of acoustical noise to
the passenger compartment. Isolation of these forces results in
a quieter vehicle. For low stiffness, the operating point on the
response curve is to the right of r = 1 where the transmis-
sibility is less than 1. Decreased damping increases the effec-
tiveness of the mount in this range.

Elastomeric mounts used in automobiles cannot satisfy these
conflicting requirements for improved ride comfort and
therefore hydraulic engine mounts have been developed. The
stiffness and damping characteristics of these mounts vary with
amplitude and frequency of excitation. Dynamic stiffness and
loss angle response curves for a typical mount for the forcing
amplitudes of 1.0mm and 0.lmm are shown in Figure 5."
Ideally, the hydraulic engine mount should have large stiffness
and have large damping for the frequency range 1 - 30 Hz and
low stiffness and damping for the frequency range 30 - 200
Hz. The former frequency range corresponds to large forcing
amplitudes from tire out of balance. For large forcing ampli-
tudes the mount has large dynamic stiffness and therefore the

™A complete discussion of dynamic stiffness and loss angle will be given in later section.
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displacements of the engine are reduced. The latter frequency
range corresponds to low forcing amplitudes due to engine
secondary forces. For these amplitudes the mount has low
dynamic stiffness and therefore the force transmitted to the
automobile frame is reduced. This decreases the acoustic
transmission, sometimes called booming noise, to the passenger
compartment. At very low frequency, the mount has low
dynamic stiffness regardless of amplitude. The mount still
performs adequately since no rigid body resonance appears in
this frequency range. Table 1 presents concisely the operating
ranges of the mount and the required characteristics discussed
in this section.

HYDRAULIC ENGINE MOUNT DESIGN AND OPERA-
TION

The performance of the hydraulic engine mount is described
by analyzing the amplitude and frequency dependence of
operation. Two approaches will be used for this description.
The approach used in the first section is consistent with the
descriptions given in automotive literature. In the following
section more traditional means of describing system frequency
response will be used. In the third section, comments regard-
ing some of the previous explanations of hydraulic engine
mount response characteristics are presented.

PHYSICAL GEOMETRY AND OPERATION - Figure 6
shows the typical geometry of an hydraulic engine mount with
inertia track and free decoupler. For an hydraulic engine
mount with a fixed type decoupler, the geometry shown in
Figure 6 remains the same except that the decoupler is not free
to move. Therefore no fluid is transferred between chambers
A and B. Instead, a compliant membrane which deforms
under pressure is used to restrict the flow of fluid through the
decoupler channel. This action forces the engagement of the
inertia track. The balance of this paper will be concerned with
hydraulic mounts with a free decoupler. For small forcing
amplitudes, (< 0.3mm is typical but the value can be varied by
design), the fluid is free to move between chamber A and
chamber B through the decoupler channel. In this mode of
operation, the decoupler is suspended in the fluid and offers
very little resistance to flow. The characteristics of the
frequency response of the mount for this forcing amplitude are
due primarily to the rubber housing. This mode of operation
provides relatively low stiffness and damping which vary little
with frequency up to 40 Hz.

Dynamic stiffness has been used as the frequency response
function for hydraulic engine mounts in the automotive litera-
ture [8,9,11-21]. This dynamic stiffness is defined as the ratio
of the force transmitted to the base mounting point to the input
displacement. The phase associated with this complex ratio is
called the loss angle and is often used incorrectly as an
indication of the damping in the system [9,12]. Thus, for low
amplitude vibrations, the hydraulic engine mount provides low
dynamic stiffness magnitude and loss angle as shown in Figure
5. This results in low force transmissibility to the chassis and
therefore reduced interior noise levels.
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For large amplitude vibrations, (amplitudes > 0.3mm), the
pumping action of the top chamber forces the decoupler to
bottom on its seats terminating flow through the decoupler
channel. The fluid flow resulting from the remainder of the
input displacement is forced through the inertia track. This
additional pumping of the mass of fluid in the channel together
with the top and bottom compliances forms an oscillatory
system. Thus for large amplitude input, the general nature of
the dynamic stiffness plot is changed. The distinctive feature
of the dynamic stiffness plot for large forcing amplitudes is the
sharp increase in the magnitude of the dynamic stiffness at low
frequencies. The loss angle also has a corresponding sharp
increase (see Figure 5). These overall effects have been called
inertia augmented damping [12,21].

APPLICATION OF LINEAR THEORY

Linear Time-Invariant Model - A fuller understanding of the
operation of the hydraulic engine mount is provided by linear
vibration theory using the linear time invariant model devel-
oped by Singh [21]. Figure 7 is a schematic representation of
this lumped parameter model. For this model the "r” subscript
refers to properties of the rubber and the "i" subscript refers to
the properties of the inertia track. Hence m, is the mass of the
rubber and m, is the equivalent mass, if the fluid in the inertia
track. The development of these model parameters from the
hydraulic mount physical properties is given in [21]. This
model applies to the coupled and decoupled states of the
hydraulic mount through modification of k,. To model the
decoupled state, the value of k; must be set small and the
inertia track is effectively uncoupled from the system. If the
decoupler bottoms out, k, becomes significantly larger as the
fluid then travels through the inertia track. Hence, with
appropriate modification of parameters, this linear model can
represent the two different operating regimes of the hydraulic
mount. Often a simplified model is used to represent the
mount under small stroke. In this case, only m,, k, and b, are
retained in what is often referred to as a voigt model for
rubber. See {21] for further consideration of this topic.

Terminology - Prior to proceeding with the analysis of this
system, qualification of the applicable frequency response
functions is required. In [10], the admittance for a single
degree of freedom system is defined as the ratio of applied
force to displacement. The dynamic stiffness is defined as the
reciprocal of the admittance. These quantities are further
categorized for multi-degree of freedom systems as either point
admittance or transfer admittance. A point response function
is one in which the response and excitation are measured at the
same system coordinate. A transfer response function is one
in which the response and excitation are measured at separate
system coordinates. ([21] refers to the transfer dynamic
stiffness as the cross-point dynamic stiffness.) Note that the
dynamic stiffness as defined and used with respect to hydraulic
engine mounts measures the system response, in this case the
force transmitted to the car frame, at a point which is not a
system coordinate.

A comparison of point and transfer dynamic stiffnesses as
used in the automotive and academic communities can be
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easily made by considering an arbitrary system (see Figure 8).
Table 2 lists the titles used by the automotive community and
used in [10] for the system response quantities as depicted in
Figure 8.
~~ The difference in the point admittance and transfer admit-
ace for the model in Figure 7 can also be seen in their
analytical expressions. For the two degree of freedom system
shown in Figure 7, the equations of motion are:

m % +b % +(k, +k)x -k,x, = F(t) )
mi, +bx, +(k, +k,)x, —k,x, =0

Transforming these two equations into the Laplace domain and
performing the necessary algebraic manipulations, a transfer
function for the point admittance is determined. This transfer
function is:

X(s) _ ms?+bs+(k, +k;) @)
Fis) D

where

D =mms*+(mb,+mb s’ +
(mr(kl +k2) +brbi +mi(kl +kr))82 +
(b, (k, +k;) +b,(k, +k))s +k k, +k k, +k k,

In order to obtain an expression for the transfer admittance, the
equation for the force transmitted to the base is required. This
equation is:

L~

Fp =kx +b X +p,(1)A, 3

The pressure in chamber A (see Figure 6), ps, has been
included in the force at the base since a portion of this force
has been transmitted by p, acting on the internal decoupler
support structure. An expression for the pressure in terms of
the lumped parameters of the equivalent mechanical system is
obtained through equations presented in [21]. The resulting
transfer function for the transfer dynamic stiffness is:

X(s) _ ms?+b;s+k, tk) @
1) D

where

D =mms*+mb,+mb)s’ +
(m (k, +k,) +b b, +m(k, +k))s® +
(b, (k, +k,) +b,(k, +k ) s +k k, +k k, +k k,

X(s) is the Laplace domain representation of the input
displacement x(t). F(s) and Fi(s) are the Laplace domain
representations of the forces measured at the input and the
_-output, respectively, where the output force is measured at
round. The complex frequency response function of the
system is found by replacing s with jo in EQ (2) and (4) and
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if required, the magnitude and phase may be determined in the
usual manner.

The qualitative shape of frequency response functions can be
understood by looking at the poles and zeros in the complex
plane. To do this, first s is replaced by jw in EQ (2) and (4).
The resulting polynomials in ® in the numerator and denomi-
nator can be factored into their individual roots. These
individual factors can be interpreted as vectors that originate at
the pole or zero and terminate at jo. As o varies from zero to
infinity along the positive imaginary axis, the length of the
vectors change accordingly. In considering the magnitudes of
the individual vectors as ¢ changes, the magnitude of the
overall frequency response function can be determined. For
example, if the length of a vector emanating from a pole
becomes very small, the magnitude of the frequency response
will become very large.

Figure 9 depicts the complex plane with three poles (x’s)
and two zeros (0’s) which is representative of a transfer
admittance frequency response function. The general shape of
the response function can be seen by using the method just
described. Poles near the imaginary axis give large response
at the frequency equal to the magnitude of the imaginary part
of the pole. The frequencies at which these occur are the reso-
nance frequencies. Zeros close to the imaginary axis will have
the opposite effect, causing the admittance to become small,
resulting in an antiresonance [10]. If the frequency response
function has no zeros, no antiresonances appear.

For the point admittance, the response curve has two
resonance peaks corresponding to the two pairs of complex
conjugate poles, and one antiresonance peak corresponding to
the one pair of complex conjugate zeros. The frequency of the
antiresonance will always appear between resonance frequen-
cies {10]. For the transfer admittance, one of the complex
conjugate pairs of poles becomes a real pole and one of the
resonant peaks disappears. The disappearance of one of the
resonance peaks is a result is a result of the location of the
measurement point not being a system coordinate, For the
transfer admittance, a resonant type response may appear near
©=0 if the real pole is very near the imaginary axis. The
antiresonance due to the complex conjugate zeros of the
transfer function remains. From this analysis, it can be ascer-
tained that for a given set of system parameters and the
definition of transfer admittance given above, the location of
the resonance frequencies need not be the same for the point
and transfer admittances. Indeed, they are likely to be
different, with the most notable difference that the transfer
admittance will have only one resonance peak. The location
of the antiresonance will remain the same as this depends only
on the zeros of the transfer function, which are the same for
both point and transfer admittance transfer functions. Differ-
ences in the phase of the frequency response will also be seen
as a result of the difference in the location of the poles and
zeros. Modification of the system parameters serves {0 move
the poles and zeros in the complex plane. The system
response can be tuned accordingly.

Interpretation of Dynamic Stiffness - The general features of
the magnitude of the dynamic stiffness and loss angle plots for




Table 1
Frequency Range of Less than 30 Hz 30 Hz to 200 Hz
Operation
Vibrational Source Wheel out of balance and out of round. Engine secondary forces.
Amplitude Range Large: > 0.3mm Small: < 0.3mm
Operational Requirement of the Large stiffness and large damping. Low stiffness and low
mount damping,

the hydraulic engine mount under large amplitude excitation
can now be explained. Referring to Figure 5, it can be seen
that as the forcing frequency is increased from zero to 40 Hz
along the x-axis, the response initially drops slightly then
quickly rises to a maximum before settling down to a constant
value. The first dip at around 8 Hz is due to a damped
resonance. Recall that for dynamic stiffness, resonances are a
consequence of zeros and antiresonances are a consequence of
the poles of the transfer function. These create dips and peaks
in the magnitude response, respectively. This is opposite to
the convention typically used for magnitude response plots of
vibratory systems in textbooks. The first dip of the transfer
dynamic stiffness at about 8 Hz is due to the set of complex
conjugate zeros of the dynamic stiffness transfer function. The
sharp increase in dynamic stiffness is due to the appearance of
a pole in the denominator of the transfer function. This
appears as a well damped antiresonance. The stiffness then

,—Temains relatively constant up to 40 Hz. The remaining zero

8 real and is typically located in the far left half-plane, Its
effect is to generally decrease the influence of the zeros of the
numerator of the transfer function, smoothing out the response
curve. This affect can be seen in Figure 5. If less damping
were present in the system, sharper peaks would be seen for
the resonance and the antiresonance.

The profile of the loss angle, or phase of the dynamic
stiffness, can be similarly explained. First consider this
transfer function with no damping. For this case, all the
complex conjugate poles and zeros are located on the imagi-
nary axis. The remaining real zero is effectively moved to
negative infinity. It then has negligible influence on the phase
for small @. For this case the phase will begin at zero and
change by +r at the resonance frequency. A change of -n
occurs at the antiresonance bringing the phase to zero where
it remains. This creates a square pulse shaped phase response.
As the damping is increased, the sharpness of the changes in
phase is diminished. For large damping, and in this instance
for a low resonance frequency, the phase becomes nonzero for
small frequencies. After passing through the resonance
frequency the phase comes under the influence of the antires-
onance which begins to decrease the phase. After passing
through the antiresonance, the phase slowly approaches zero as
the forcing frequency is increased.

“— Comments on Terminology used to Describe Hydraulic
dounts - Terminology used previously to explain plots of
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dynamic stiffness can now be examined. The term "loss
angle" in reference to the phase of the dynamic stiffness is not
accurate. This name seems to have been adopted as it was
thought that the increase in phase for large amplitude forcing
was an indication of the damping in the system. The charac-
teristic increase and decrease in the phase is due to the fact
that the response is for a two degree of freedom system. The
peak of the phase response would be larger if less damping
were present in the system.

The phrase "inertia augmented damping” has also been used
in reference to the response of the hydraulic engine mount for
large amplitude forcing [12,21]. In [12] it is correctly indicat-
ed that damping alone is not adequate in explaining the phase
relationship of the input displacement and the transmitted force
of the mount under large amplitude input. Hence, the author
recommends the phrase ‘“inertia augmented damping".
However, with the explanation of the response given in the
previous section, “inertia augmented damping” is not an
accurate description. The response is described accurately
using linear theory.

NUMERICAL VALIDATION OF THE LINEAR TIME-
INVARIANT MODEL

Using EQ (4), a2 comparison of data obtained experimentally
from an hydraulic engine mount and the linear analytical
model can be made. Figures 10 and 11 show a comparison of
the experimental and analytical magnitude and phase of the
transfer dynamic stiffness, respectively. For both the magni-
tude and the phase, very good correlation is seen over the
frequency range 040 Hz. The parameters used for the
analytical model were found using an optimization routine
which minimized the sum of the magnitudes of the difference
between the experimental and analytical complex dynamic
stiffness values over the frequency range of the experimental
data, 0-40 Hz. The parameter values used to produce the
analytical results shown in Figures 10 and 11 were found by
setting the parameter k, to zero prior to the optimization. k,
represents the spring constant associated with the collector
separator diaphragm for chamber B (see Figure 6). This
diaphragm is very compliant in comparison to k; and k,, so this
assumption is reasonable. The parameter values given by the
optimization and used for this analysis are;
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Table 2

Mathematical Automotive Ewins [10]
Expression Community
- X(s)/F(s) Not used Point Admittance
F(s)/X(s) Not used Point Dynamic Stiffness
X(8)/Fr(s) Not used Transfer Admittance”
F(s)/X(s) Dynamic Stiffness Transfer Dynamic Stiffness”
“The definitions from [10] require that all response quantities be measured at a system coordinate,
Here, F; is not measured at a system coordinate,

k, = 181238.0

k, = 77108.1

k, = 0.0

b,= 115.5

b= 12243

mi = 16.9

Using the parameter values determined in the optimization,
the poles and zeros of the transfer function for the transfer
dynamic stiffness were found. The three zeros are:

;2 = -36.53 £ i43.20 s, = -2235.86
The poles of the transfer function are:
T80 =-36.21 £ i57.01

These pole and zero locations are consistent with the complex
plane mapping technique outlined previously.

Similar results to those just presented are given in [21]. In
[21], a (2* order)/(2* order) transfer function with b, = 0 is
used. It is assumed that k; >> 100k,. The results presented in
[21] using this simplified transfer function, entitled the
Reduced Order Form of Model II, could not be duplicated
using the optimization technique described above. Determina-
tion of the parameters using the optimization technique with
the transfer function as given in EQ (4) with all six parameters
free, yielded physically unrealizable results. Similar unrealistic
results were obtained by optimizing EQ (4) with only b, = 0.

CONCLUSIONS AND COMMENTS

This paper explains the operation and response of hydraulic
engine mounts in detail. In doing so, the sources and charac-
teristics of engine vibrations are thoroughly discussed. The
means by which hydraulic engine mounts meet the require-
ments for improved engine isolation is explained using linear
vibration theory. Verification of the use of a linear, damped
two degree of freedom model to predict the response of the
mount for large amplitude forcing was done.

—
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Figure 5 Dynamic stiffness and loss angle response curves for a typical mount for the forcing
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Figure 6 Typical geometry of an hydraulic engine mount with
inertia track and free decoupler.
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Figure 7 Schematic representation of lumped parameter
two degree of freedom model of an hydraulic engine
mount.
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Figure 8 Schematic of arbitrary vibratory system. Figure 9 Complex plane with three poles (x’s) and two zeros

(0’s) representative of a transfer admittance frequency response

function.
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Figure 10 Comparison of the experimental and analytical magnitude of the transfer dynamic stiffness.
Experimental data given by ©.
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Figure 11 Comparison of the experimental and analytical phase of the transfer dynamic stiffness. Experim-
ental data given by o.
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