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Uncertainty in Accident

Reconstruction Calculations

ABSTRACT

The problem of determining the uncertainty in the
result of a formula evaluation is addressed. The origin
of the uncertainty is the presence of variations in the
input variables. Three popular techniques are
discussed in the context of accident reconstruction.
The first establishes upper and lower bounds through
calculation of the largest and smallest possible values
of the quantity being estimated for all combinations of
the input variables. The second method uses
differential calculus and places variations of the
variables into a delta equation derived from the
mathematical formula. The last method covers cases
where statistical information about the input data is
known. Approximate means and variances are
developed for linear and nonlinear formulas.
Examples are given for all of the methods such as
calculation of speed from skid distance and calculation
of stopping distance including perception-decision-
reaction (PDR) time.

INTRODUCTION
Because of their intended purpose many
reconstruction calculations find their way into

courtroom testimony. According to Bernstein (1993)
there has been recent legal activity pertaining to the
screening of technical data and expert testimony.
Federal Rules of Evidence, according to Bernstein,
now include the following:
1. the court should determine whether the
theory or technique in question can be (or
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has been) tested
2. peer review is an important consideration
3. the known or potential rate of error of the
technique should be determined, as should
be the existence and maintenance of
standards controlling the technique’s
operation.
This paper addresses some of the methods useful in
addressing the item 3 in the context of vehicle
accident reconstruction. Although some theory of
uncertainty is presented, coverage is primarily by
example to illustrate some common ways of
calculating and expressing uncertainty.

Following some definitions, three techniques are
discussed. These are the establishment of upper and
lower bounds on a calculated quantity, the use of
differential calculus to provide a way to determine
uncertainties in calculations and lastly, uncertainty in
a statistical context.

SOME DEFINITIONS

Because the topic of uncertainty in measurements and
calculations arises in many fields, many terms are used
to describe the concept of "uncertainty". For example,
books on the topic of uncertainty use synonyms and
modifiers such as variation, error, disturbance,
discrepancy, fluctuation, etc. Some definitions and
descriptions are now given, not with the intention of
answering any questions in terminology, but rather to
make sure that the readers of this paper understand
the terms being used.



The context here is that of using-a formula or
equation to estimate an accident variable which
depends on the values of constants (whose values are
known with ‘“certainty") and other variables
representing physical quantities which can possess
significant variations. In common mathematical terms
the estimate is the dependent variable, y, which
depends on one or more independent variables
(physical quantities), u, v, . . . , w. Often, these
independent variables will be referred to simply as the
variables. In this paper, the term variation is arbitrarily
associated with the independent variables and the
term uncertainty is associated with the estimate, y.
Special names given to specific values of some of the
variables such as u will be discussed including the
minimum, u,,, maximum u,, and a representative or
nominal value, U. Variations in the variables will be
denoted by &u, 8v, . . . , éw, leading to a
corresponding uncertainty, §y. The origin or cause of
the variations is broad and can come from: repeated
measurements, unmeasured physical quantities
represented inexactly by "typical” values, quantities
known only with a limited degree of precision, etc.

UPPER AND LOWER BOUNDS ON ESTIMATES

One of the simplest ways of quantifying uncertainty is
to establish upper and lower bounds on the dependent
variable caused by variations in the independent
variables. First, those quantities in the equation which
possess a significant degree of variation are identified
as variables. Then reasonable ranges of each variable
are determined. Finally the lowest and highest values
of the dependent wvariable for all possible
combinations of the values of the independent
variables are computed.

For example, one of the most commonly used
formulas in accident reconstruction is one which uses
a measured length of skid marks to provide an
estimate of the speed of a vehicle at the instant the
wheels lock. The formula for the initial speed v;
preceding a locked-wheel skid over a distance d
ending at a speed of vg, is

v = (v +2fgd)e ()
Under typical circumstances, the quantities f and d,
the friction factor and skid mark length, are known
with less than perfect certainty and are chosen as the
variables here. vy might also be a variable, but is
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arbitrarily assumed here to be zero. The remaining
quantity, the acceleration of gravity, g, is known
accurately and is taken to be a constant. Suppose that
d and f are known with uncertainty such that d,, < d
< d,, and that f,, < f < f,,. A corresponding upper
and lower bound on the estimate of vy is

(2 fm“ g dlﬂﬂ)llz <vi< (2 fmx g dmx)l/2 (2)

The uncertainty &v; is taken to be half of the
difference of the upper and lower bounds so that V;
+ §v; is the way the estimate of speed at wheel lock
is written to show uncertainty. For example if f,, =
06, f,, = 0.8, d,, = 32.0 m and d,, = 34.0 m then
194 m/s < v; < 23.1 m/s. Then 6f = 0.1, §d =1 m
and the value of V| with uncertainty is 21.3 = 1.9.
(According to common practice the number of
significant figures to the right of the decimal point is
chosen to reflect the precision of the input data.)

This example illustrates what is probably the simplest
and most versatile method for determining
uncertainty. It applies to any formula no matter how
complex and is easy to carry out. It is even possible to
use this with computer simulations using multiple runs -
with different input. Care must be used when the
formula involves differences and division. For
example, the lower limit of y = (a-b)/c is obtained by
using the lower limit of a and the upper limits of b
and c. Negative numbers can also be tricky.

A drawback of this (and the next) method is that the
statistical nature of the variations is not explicitly
taken into account and so the likelihood or probability
of reaching either of the limits cannot be assessed.
Attributing the upper and lower bounds to a specific
percentage of a population should not be done, or be
done with due caution. Statistical conclusions should
follow the use of statistical methods and always be
based on statistical data.

DIFFERENTIAL VARIATIONS BASED ON THE
MATHEMATICAL FORMULA

Another common method of estimating uncertainty,
frequently referred to as a form of error analysis is
covered in many laboratory courses taken in science
and engineering. For example, see texts such as Beers
(1957) and Taylor (1982). The method uses
differential calculus to relate the quantity being
calculated, y, to the dependent variables u, v, ..., w.
In general
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From calculus, the differential of y can be found using
the chain rule as

y=1fuv...,w)

dy oy
dy = (= )du+(=)dv+...
y= (D)au+(2)av
+ ( z—y“) dw 4
With the nominal or reference values of u, v, .. ., w
given by U, V, ..., W, a formula for uncertainty is

found by replacing the variable differentials by
variations such that
oy

oy
Sy = (é—u)U.V,W Su + (é—v)u,v,w Y

+...+(-§-‘y’)0'v’w Sw

Equation 5 is an approximation that amounts to a
linearization of the function y(u, v, . . ., w) around its
value y(U, V, ..., W). Note that the derivatives are
evaluated at the reference or nominal values.

®)

In the example of Eq 1, y = v; and there are 2
variables, u = f and v = d. After using Eq 5 and
dividing by the nominal value Vj, the relative variation
of vj is

8vy

vl ©)

8t &d
=Vl +E)]

The nominal values for d and f are the mid or
averages of d,, and d_, and of f,, and f,,.. Finally

vy = 10.64 O—'l + 1———.0 = 1.8 m/
v . = 1. S
: [ (07) (33.0) ]

It is clear that in this example, the variations in
friction have a considerably greater effect than the
variations in the distance measurements. This would
generally be true especially when the friction factor is
small, such as under icy conditions.

Note that in the previous section, v; was bounded by
23.1 and 19.4; subtraction gives a §v; = 1.9, similar to
above. Recall that the upper and lower bounds found
in the previous section do not involve any
approximation whereas the derivation of Eq 5 involves
replacement of the (infinitesimal) differentials by
(finite) variations. Further recall from calculus that
this process is equivalent to expanding y in a Taylor
series about U, V, . . ., W, and dropping all higher
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order derivatives. So the fact that the two example
uncertainties are identical indicates that the
approximation of Eq 5 is a good one for the
uncertainty of Eq 2 in the region of the given nominal
values.

In general, if

y = auP vl @)
where a, p, and q are constants, then
) Y6 + Y6 8)
= p—6u — 8v
y=Py 15 (

For equations of the form of Eq 7 (such as Eq 1), the
uncertainty depends not only on each variation but
also is influenced by the ratios, Y/U and Y/V. Where
at least one ratio is large, the uncertainty is large. For
the skid distance equation, the uncertainty generally
increases as the nominal coefficient of friction
becomes smaller. In fact, if the nominal friction factor
in the example was much lower, say 0.2, then the
uncertainty contributed by the distance term would be
negligible.

STATISTICAL UNCERTAINTY

In the skid distance example with bounds on the
velocity estimate given by Eq 2, a range of values of
f, f,, = 0.6 to [, = 0.8, was chosen. If measurements
of the friction factor are not made at an accident
scene, a typical range such as this is often used,
chosen from experience and/or from published data.
This particular range would be a reasonable estimate
for well-travelled dry asphalt pavement at moderate to
high speeds, for example. But the exact meaning of f,,,
and f,, is subject to ambiguity however. Are these
bounds that are never exceeded? Are they values
exceeded only 1 or 2% of the time? Furthermore, is
an intermediate value such as 0.66 as likely as that of
0.71; is 0.60 as likely as 0.73, or 0.75? Or, suppose
that a single value of f = 0.72 was measured at an
accident scene. Then what variation should be used?
If the likelihood of the values or ranges of values of f
are to be taken into account, then statistical theory
must be used. The problem then is to find the
distribution of the uncertainty for given distributions
of the independent variables, now considered to be
random variables.
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Figure 1. Probability density functions for a normally
distributed variable with a mean of 10 and a variance of 1
(on right) and the square root of a normal distribution (on
left) with approximate mean and variance of 3.16 and
0.158, respectively

There is a well known theorem from statistical theory
of normal or Gaussian distributions that can be very
helpful in relating variations to uncertainty. If a
random variable has a normal distribution, say u =
N(u,, 0.2), where p, is the mean and o2 is the
variance, and a quantity, x, depends linearly on u,

®)

where a and b are constants, then x is also normally
distributed, x = N(u,, 0,%), where i, =a y, + b

and o = a’? o,% (See Hald, 1960, for additional
information.) For example, for a constant speed, v,
the distance travelled is

Xx=au-+b

= (10)

where t is time. If a set of measurements of t are
normally distributed then the distance calculated from
Eq 10 is normally distributed, according to the
theorem. Unfortunately, linear relationships seldom
play a major role in accident reconstruction. For some
special cases, some nonlinear relationships can be
handled rigorously. One of these, a form of Eq 1, is
discussed below. But a more general, approximate
theory is also available; this is also discussed followed
by an example of a stopping distance calculation.

Xx=vt

Distribution of a Square Root Function According

Normal Density Function
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to Hald (1960), if an equation relating two random
variables has the form

X = avu, a>0 (11)
and u = N(u,, 0,%) then x has a probability density
function ,

X (x2fa - 1 N2/ 2
fx) = ()7 — e (x¥a - pn,)20, (12)
T°  ao,

where the mean and variance of x are given by i, =
a v, and 0, ® ao,/2v,. Equation 12 is not the same
as a normal distribution but has a similar shape.
Figure 1 shows a typical pair of density functions
corresponding to Eq 11 and 12. Equation 1 has the
form of Eq 11 when v; = 0 and if only f has a
significant variation (i.e., the distance has negligible
variation). Figure 1 illustrates that even if f has a
relatively broad statistical variation (curve on the
right) the uncertainty in the velocity (distribution on
the left) can be relatively small.

Consider such an example with vg = 0, a known skid
length and with the friction factor alone as a random
variable. For compatibility with the previous examples,
values of d = 33 m and a mean value of f, u; = 0.7
(mid way between 0.6 and 0.8), are chosen. A
variance o¢ = 5.0 x 103 is used (typical of actual
experimental values, presented shortly). Then the
initial velocity has an approximate mean and standard
deviation (square root of the variance) of p, = 21.3
m/s and o, = 1.08 m/s. Under the further assumption
that f is approximately normally distributed, various
statements about the initial speed estimate can be
made. Approximately 90% of a normal variable has
values between g * 1.6450, so for u, and o, as
calculated, the skid distance for the given pavement
frictional characteristics would indicate an initial speed
of 21.3 = 1.8 m/s about 90% of the time. Note that
despite that év; from example 2 above and 1.6450,
here both equal 1.8 m/s, only the latter has a specific
statistical meaning.

Distribution of More General Functions For
nonlinear mathematical formulas or equations which
relate random variables, approximate methods must
be used to find the statistical uncertainty. The mean
and variance of a variable y that depends on random
variables u, v, . . ., w such that

y=yu,v,...,w) (13)
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Figure 2. Measurements of the coefficient of friction over
the full length of a new, 930 km asphalt road in Holland;
from a TRRL Report (1972). The average is 0.593 and the
standard deviation is 0.065.

can be found by expanding y in a Taylor series,
dropping terms with derivatives higher than the first
and using the relationship for linearly related normal
variables mentioned earlier. The procedure is given in
detail in Taylor (1982) and Beers (1957) and is not
repeated here. In summary, the mean of y is

(14)

That is, the mean of y is found by evaluating Eq 13
with the mean values for the variables. The variance

ofyis
o2~ (g—yu)Za“Z+(g)zov2+...

+(g_yjzaw2

where the derivatives are evaluated at the mean
values of the variables.

u'y = Y(Mm Moyy « o vy :uw)

(15)

Example Figures 2 and 3 show the results of
measurements of pavement-tire friction coefficient on
the roads indicated. The distribution of values in both
cases is approximately bell-shaped which indicates that
an assumption of normality can be made for those
pavements. Normality of tire pavement frictional
variations is used in the following example of
determining the statistical properties (mean and
variance from Eq 14 and 15) of stopping distance.
Stopping distance is the total distance, dr, travelled

151

40

30

20

Percentage

L b | b L

063 073 083

0.53
Coefficient of Friction, f

013 023 033 043

Figure 3. Distribution of skid numbers for 230 test sections
of two-lane Kentucky roads for a wide range of annual
average daily traffic; Rizenbergs, et al (1977). The average
is 0.393 and the standard deviation is 0.079.

during the perception-decision-reaction time, tp, and
the skidding distance, dg, during a panic, locked-wheel
skid to rest. The total distance is

dT = (2gds)”2 ‘\/T tp + dS (16)

It is assumed here that the perception-decision-
reaction time, and the friction factor, are normally
distributed random wvariables. The data for this
example is summarized in Table 1.

Equation 14 gives an average stopping distance of

pr = a p, pp + ds = (2gds)" v gp + dg

(25.45) (0.7) (1.50) + 33 = 649 m
Equation 15 gives

o = pupt 0,2 + w2 ot = 168.4
or
or =130 m

If an assumption is made that the stopping distance is
normally distributed, then 90% of the population is
contained within gt + 1.645 o, that is, the stopping
distance is 64.9 * 21.4 m about 90% of the time.
Another way of stating this is that, based on the data



Table 1
Data for the Stopping Distance Example

Variable Type Value or
Mean & Variance
g constant 9.81 m/s?
dg constant 33 m
f N(us 0f) ke = 0.7
of = 5.0x 103
tp N(up, 05%) tp = 1.50 S,
UP2 = 0.36

* these are representative values from Olson (1989); also see
Sens, et al (1989)

given in Table 1 and with 90% confidence, the
stopping distance is between 43.5 and 86.3 m.

An assumption is made in deriving the method given
by Eq 13, 14 and 15 and should be understood when
applying it. The assumption is that the variations of u,
v, ..., w are statistically independent. Consider this
in the context of Eq 1. Suppose the distance d is
measured at an accident scene by pacing-off the
distance and multiplying the number of paces by the
average of the person’s step length. Suppose further,
that a vehicle is brought up to a known speed, its
wheels are locked and the skid distance measured to
estimate the friction factor (by calculation). If the skid
length for the skid test is measured by the same
person using the same method, then variation in f is
tied in or related to variation in d, that is, they are not
independent. If the relationship in the variations in
the variables is known, the independence assumption
can be overcome. This is not dealt with here and
independence of the variations is assumed.

DISCUSSION AND CONCLUSIONS

Questioning the accuracy and reliability of estimates
for accident reconstructions in a legal environment is
certainly legitimate. If courts become more demanding
(and they may very well in the future) techniques such
as above will become more commonplace. Obviously,
the more accurate the input, the more realistic and
rcliable the results. The weight of testimony should be
in proportion to its accuracy. Critical cases should not
be decided on results with high uncertainty.

On the positive side, calculations of uncertainties can
make reconstructions more effective when accurate
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input information is available. If calculating
uncertainties is to become more commonplace, it will
be necessary to determine and record the variability
of measurements at the time the measurements are
made. If a skid length fades over a distance of 1 m,
then it should be measured as a length £ % m
variation. In other words, the concepts here should be
introduced to process of accident investigation.

All three methods covered above are useful to
estimate uncertainty. The second method using
differential variations is more sensitive to the
mathematical form of the equation being used and is
more illustrative in comparing relative uncertainty due
to the different variables. Its use should be limited to
situations where the variations are relatively small
because of the linearization used in its derivation.
Computing upper and lower bounds is the simplest
and most general of the three methods to apply but
provides the least information. Since the likelihood of
simultaneously reaching the extreme values of the
variables is not taken into account, the results can be
unrealistic.

The last, using mathematical statistics, provides the
most information about uncertainty and requires the
most input information, namely, quantitative statistical
descriptions  (distributions) of the independent
variables. Being an analytical method, it is necessary
to use approximate distributions for nonlinear
formulas. It can work well for simple to moderately
complex reconstruction equations, but becomes
impractical for complex reconstruction problems.

The methods covered in this paper are not the only
ways of estimating uncertainty. A method currently
receiving attention is the use of Monte Carlo methods.
Roughly speaking, the Monte Carlo method is a brute
force randomized simulation on a computer of a
mathematical model using appropriate statistical
distributions for each of the variables. It can be quite
sophisticated and is capable of handling complex
models as well as correlations among the problem
variables.
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